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Abstract

We develop linear algebraic techniques in algorithms and complexity, and apply them
to a variety of different problems. We focus in particular on matrix multiplication
algorithms, which have surprisingly fast running times and can hence be used to
design fast algorithms in many settings, and matrix rank methods, which can be
used to design algorithms or prove lower bounds by analyzing the ranks of matrices
corresponding to computational tasks.

First, we study the design of matrix multiplication algorithms. We define a new
general method, called the Universal Method, which subsumes all the known ap-
proaches to designing these algorithms. We then design a suite of techniques for
proving lower bounds on the running times which can be achieved by algorithms us-
ing many tensors and the Universal Method. Our main limitation result is that a
large class of tensors generalizing the Coppersmith-Winograd tensors (the family of
tensors used in all record-holding algorithms for the past 30+ years) cannot achieve
a better running time for multiplying 𝑛 by 𝑛 matrices than 𝑂(𝑛2.168).

Second, we design faster algorithms for batch nearest neighbor search, the prob-
lem where one is given sets of data points and query points, and one wants to find
the most similar data point to each query point, according to some distance mea-
sure. We give the first subquadratic time algorithm for the exact problem in high
dimensions, and the fastest known algorithm for the approximate problem, for vari-
ous distance measures including Hamming and Euclidean distance. Our algorithms
make use of new probabilistic polynomial constructions to reduce the problem to the
multiplication of low-rank matrices.

Third, we study rigid matrices, which cannot be written as the sum of a low rank
matrix and a sparse matrix. Finding explicit rigid matrices is an important open
problem in complexity theory with applications in many different areas. We show
that the Walsh-Hadamard transform, previously a leading candidate rigid matrix, is
in fact not rigid. We also give the first nontrivial construction of rigid matrices in a
certain parameter regime with applications to communication complexity, using an
efficient algorithm with access to an NP oracle.
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Thesis Supervisor: Virginia Vassilevska Williams
Title: Steven and Renee Finn Career Development Associate Professor of Electrical
Engineering and Computer Science
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Chapter 1

Introduction

In this Chapter, we give a high-level introduction to this dissertation. After this In-
troduction and the Preliminaries in Chapter 2, we get into the technical components
of the dissertation, which are divided into three main Parts: Part I is about matrix
multiplication algorithms, Part II is about the polynomial method and nearest neigh-
bor search algorithms, and Part III is about matrix rigidity. Each of those Parts
begins with its own, more technical overview of the results therein.

1.1 Matrix Multiplication and Matrix Rank

Linear algebra is used throughout computer science, including in areas like error
correcting codes, signal analysis, graphics, optimization algorithms, secure encryption
and secret sharing schemes, graph analysis algorithms like PageRank, and a number
of important machine learning algorithms. Understanding and improving the linear
algebraic ideas underlying these different applications is imperative to the theory and
practice of computation.

In this dissertation, we develop novel bridges between linear algebra and computer
science. We will use linear algebraic techniques which were originally designed for
certain tasks, and repurpose them to solve new problems. At the same time, rather
than just using known linear algebraic techniques, many of our results will require new
linear algebraic concepts and constructions. Although a number of known concepts
from linear algebra will make appearances, there are two in particular which will play
a central role: matrix multiplication, and matrix rank.

Matrix Multiplication Matrix multiplication is one of the most basic algebraic
operations, and most computational tasks in linear algebra can be performed in the
same number of arithmetic operations as matrix multiplication, including computing
the determinant [Str69] or the inverse [Str69, BH74] of a matrix, computing various
matrix factorizations [BH74], solving systems of linear equations [Str69], and even
solving linear programs [CLS18]. Thus, almost every algorithmic application of lin-
ear algebra makes use of matrix multiplication algorithms, and the ‘bottleneck’ in
designing faster algorithms for these applications is frequently matrix multiplication.
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It was widely believed that two 𝑛 × 𝑛 matrices cannot be multiplied using fewer
than 𝑛3 arithmetic operations until 1969, when Strassen [Str69] published a break-
through algorithm which uses only 𝑂(𝑛2.81) arithmetic operations. We measure the
running time of matrix multiplication algorithms in terms of the number of required
arithmetic operations since, when multiplying matrices with very large entries, the
time to multiply and add those entries can also significantly contribute to the final
running time. That said, typically in applications, the entries of the matrices are
small enough that this contribution is negligible.

Since Strassen’s algorithm, an enormous amount of work has gone into speeding
up matrix multiplication. The best known theoretical algorithm for matrix multipli-
cation uses a multitude of clever ideas coming from algorithm design, algebra, and
combinatorics (see Figure 1-1 below). Matrix multiplication in practice has received
as much if not more attention, with a number of hardware and software optimizations
which yield fast practical algorithms.

Reducing other algorithmic problems to matrix multiplication gives a way to apply
the same ideas and algorithms to a wide variety of computational tasks. Algorithmic
problems from areas as diverse as parsing, graph algorithms, cryptography, statistics,
and learning theory, which a priori have nothing to do with matrix multiplication, have
been sped up by clever reductions to matrix multiplication. Hence, understanding
the computational complexity of matrix multiplication is one of the most central and
applicable problems in computer science.

Matrix Rank The rank of a matrix 𝑀 measures the ‘intrinsic dimensionality’
of the rows and columns of 𝑀 . In today’s era of ‘big data’ and high-dimensional
datasets, it is no surprise that matrix rank can play a role in algorithm design: the
observation that some high-dimensional matrix actually has low rank can often be
used to perform computations faster on that matrix. Indeed, most basic operations
can be performed faster on low-rank matrices (see e.g. [CKL13]).

Matrix rank can also be helpful for proving lower bounds. Roughly, the idea is to
show that if a matrix𝑀 has high rank (or a variant on rank), then𝑀 is so complicated
that computations related to 𝑀 cannot be done efficiently. Rank methods like this
can be used in the most evident way to show lower bounds for algebraic problems
directly related to 𝑀 . For example, if 𝑀 has high rank, then computing the linear
transformation defined by 𝑀 applied to an input vector cannot be done with small,
constant-depth linear circuits. In fact, almost every known lower bound in arithmetic
complexity theory has been proved via rank methods; see e.g. [EGOW18].

Rank methods can also be used to show lower bounds for functions and models of
computation that are seemingly unrelated to linear algebra. Often one can associate
a matrix 𝑀𝑓 with a function 𝑓 , and show that if the rank of 𝑀𝑓 is high, then 𝑓 itself
cannot be computed by efficient algorithms or protocols. For example, if one can
show that the truth table matrix of a Boolean function 𝑓 hash high rank, then this
implies 𝑓 does not have efficient deterministic communication protocols [MS82].
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1.2 Summary of Results
In this dissertation, we develop linear algebraic tools in algorithms and complexity,
especially developing the theory of matrix multiplication algorithms, and introducing
new rank methods in algorithms and complexity. We apply these tools, often in con-
junction with each other, to solve a number of computer science problems, including
problems where linear algebraic tools haven’t been used before.

We now describe the main contributions of this dissertation. The main body of
the dissertation is arranged into three Parts.

Part I: Limitations on Matrix Multiplication Algorithms

Since Strassen published his algorithm in 1969, there has been a long line of
work developing many different tools for designing faster matrix multiplication al-
gorithms, leading to the best known running time of about 𝑂(𝑛2.373) arithmetic oper-
ations [Wil12, LG14]. In Figure 1-1, we show the history of the best known exponent
of matrix multiplication over time, i.e. the best upper bound on the constant 𝜔 such
that one can multiply two 𝑛×𝑛 matrices using about 𝑂(𝑛𝜔) arithmetic operations. It
is popularly conjectured that one can design an algorithm achieving 𝜔 = 2, and this
conjecture is very appealing since it would mean that matrix multiplication, along
with many different applications, can be solved in nearly linear time in the input size.

Naïve
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Figure 1-1: The best known exponent of matrix multiplication over time. For in-
stance, Strassen’s breakthrough algorithm from 1969 [Str69] multiplies 𝑛×𝑛 matrices
using 𝑂(𝑛2.81) arithmetic operations, so the point (1969, 2.81) is plotted above.

One striking feature of Figure 1-1 is that, although there was a flurry of improve-
ments to 𝜔 in the first 20 years after Strassen’s result, the best known value has
remained nearly unchanged for more than 30 years. In Part I of this dissertation, we
help to explain why progress has been mostly stagnant for so long.
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The known approaches to designing matrix multiplication algorithms follow a
formula which uses two main components:

1. An efficient algorithm for evaluating some order-3 tensor 𝑇 . Matrix multiplica-
tion can be seen as the task of evaluating a prescribed set of bilinear polynomials
on a given input, which can in turn be seen as evaluating a certain order-3 ten-
sor on a given input; 𝑇 corresponds to such a task but with a different set of
bilinear polynomials.

2. A method of reducing from one tensor to another, so that algorithms for eval-
uating the latter can be converted into algorithms for evaluating the former.

Combined, these two components give a matrix multiplication algorithm, by using the
method to reduce to 𝑇 , and then applying the algorithm for 𝑇 . Both major approaches
to designing matrix multiplication algorithms — the ‘Laser Method’ spearheaded by
Strassen [Str87] which is used to achieve the best current bound on 𝜔, as well as the
more recent Group-theoretic Method introduced by Cohn and Umans [CU03] — follow
this formula, but with restrictions on what tensor 𝑇 may be used in component (1),
and only a limited type of reduction used in component (2). In particular, all the
record-holding algorithms for the past 30+ years have come from such an approach
where 𝑇 is the ‘Coppersmith-Winograd tensor’ 𝐶𝑊𝑞 introduced by [CW90].

In Chapter 4, we define a new generalization of all the known approaches to
designing matrix multiplication algorithms, which we call the Universal Method. It
makes use of the most general type of reduction between tensors which is known to
be applicable in component (2) of the above formula, called a degeneration.

Then, in Chapter 5, we prove lower bounds on the algorithms one can design using
the Universal Method. We show that if the Universal Method is applied to any tensor
in a big family generalizing 𝐶𝑊𝑞, then the resulting upper bound on 𝜔 cannot be
better than 2.168. Our limitation result is quite general, and also applies to all other
record-holding tensors in the history of matrix multiplication algorithms. Hence, in
order to prove a better bound on 𝜔, one must take a radically different approach,
either by starting with a tensor 𝑇 which is very different from those which have led
to the best algorithms, or else by analyzing tensors to yield matrix multiplication
algorithms in an entirely new way.

Our limitation result, which at first seems to be a negative one, actually leads to
a number of interesting algorithmic ideas. First, in defining the Universal Method
itself, we highlight steps in the current best matrix multiplication algorithms where
more powerful techniques may be possible but aren’t being used; while our result rules
out achieving a running time of 𝑂(𝑛2) using these techniques, it doesn’t rule out an
improved running time of, say, 𝑂(𝑛2.2). Second, in the process of proving our limi-
tation result, we also identify a large number of fundamentally different algorithms,
arising from new, different tensors, which are able to match the best-known bound
of 𝜔 ≤ 2.373. Perhaps one of these different algorithms will help improve our matrix
multiplication algorithms.

The proof of our limitation result makes use of a measure of complexity of a tensor
called its slice rank. When one generalizes the notion of matrix rank to tensors, there
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are a number of natural ways to do so; slice rank is one such generalization. Roughly,
we observe that any tensor whose slice rank is not high enough is too simple to be
used with the Universal Method to design very fast matrix multiplication algorithms.
We then give slice rank upper bounds for 𝐶𝑊𝑞 and a wide variety of other tensors.

Part II: Probabilistic Polynomials and Hamming Nearest
Neighbors

The polynomial method has been a powerful tool for studying Boolean functions, at
least since Minsky and Papert’s 1969 book [MP69]. The method concerns represent-
ing Boolean functions by ‘simple’ polynomials. Minsky and Papert first used the
polynomial method as a way to prove limitations on different models of computation
(they focused in particular on ‘perceptrons’). Roughly, the idea is to show that

1. any function computed by a certain model of computation can also be computed
by a simple polynomial, and

2. some particular Boolean function 𝑓 cannot be computed by a simple polynomial.
Combined, this means the model of computation cannot compute the function 𝑓 . This
method is still one of the most popular approaches today for proving lower bounds
in complexity theory.

There are numerous ways to measure the ‘simplicity’ of a polynomial, but the
most common is to use the polynomial’s degree. Consider, for instance, the Boolean
OR function on 𝑛 inputs from {0, 1}. It can be computed exactly by the polynomial

𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 1− (1− 𝑥1) · (1− 𝑥2) · · · (1− 𝑥𝑛).

Indeed, if all the 𝑥𝑖 are 0, then 𝑝 evaluates to 0, but if any of them is 1, then 𝑝
evaluates to 1. However, 𝑝 has degree 𝑛, which is as big as possible: every Boolean
function on 𝑛 inputs can be computed by some polynomial of degree at most 𝑛.

One way around this high degree is to weaken the constraints on what it means
for a polynomial to ‘compute’ a function. For instance, instead of aiming for an exact
polynomial for OR, we can instead design a probabilistic polynomial : A distribution
𝒫 on 𝑛-input polynomials such that for every (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ {0, 1}𝑛 we have

Pr
𝑝∼𝒫

[𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑛) = OR(𝑥1, 𝑥2, . . . , 𝑥𝑛)] ≥ 1− 𝜀

for some error parameter 𝜀 > 0. We can design such a probabilistic polynomial
over F2 (the field with two elements, i.e. the integers mod 2) as follows: to draw
a polynomial from 𝒫 , pick 𝑘 = ⌈log(1/𝜀)⌉ independent uniformly random subsets
𝐼1, 𝐼2, . . . , 𝐼𝑘 ⊆ {1, 2, . . . , 𝑛}, and output

𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 1−
𝑘∏︁

ℓ=1

(︃
1−

∑︁
𝑖∈𝐼ℓ

𝑥𝑖

)︃
.

If all the 𝑥𝑖 are 0, then 𝑝 always evaluates to 0. Otherwise, for each ℓ ∈ {1, 2, . . . , 𝑘},
the sum

∑︀
𝑖∈𝐼ℓ 𝑥𝑖 is odd with probability 1/2, and so the polynomial 𝑝 evaluates to 1
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(over F2) with error only 2−𝑘 ≤ 𝜀. 𝒫 is a distribution on polynomials of degree only
𝑂(log(1/𝜀)); for constant 𝜀 > 0, this is constant degree!

The polynomial method is concerned with trade-offs like the above: between the
guarantees of a polynomial, and the degree or simplicity that can be achieved. Prob-
abilistic polynomials, for instance, can achieve much lower degrees than exact poly-
nomials, but they have a chance of outputting the wrong value.

While complexity theorists see these low-degree polynomial representations as a
weakness of the computational model, algorithms designers can instead view them
as algorithmic tools: If a critical subroutine in an algorithm can be converted into
a low-degree polynomial, then a fast algorithm for manipulating polynomials can
sometimes be applied to speed up that subroutine, and solve the original problem
faster. This viewpoint has led to the same polynomials, which complexity theorists
designed for proving lower bounds, being used in the design of faster algorithms for
many problems, including in learning theory [Val15], constraint satisfaction [Wil14c],
and graph algorithms [Wil14a].

In Part II of this dissertation, we apply the polynomial method in novel ways to
design new algorithms and prove new lower bounds. Our results critically make use
of a connection between low-degree polynomials and low-rank matrices: if the entries
of a matrix can be computed by a low-degree polynomial, then that polynomial can
be used to construct a low-rank representation of the matrix. This can allow us to
use fast matrix multiplication as the “fast algorithm for manipulating polynomials”
from the previous paragraph. In other words, the polynomial method can be seen as
a way to design faster algorithms for many different algorithmic problems by giving
reductions to matrix multiplication, allowing us to take advantage of fast matrix
multiplication algorithms.

In Chapter 7, we design new low-degree polynomial representations of Boolean
functions. We focus in particular on polynomial representations of threshold functions
like the majority function MAJ, although our results will extend to symmetric Boolean
functions as well as a number of classes of Boolean circuits. Threshold functions arise
naturally in many settings, including in linear programming, in machine learning
algorithms like perceptrons and neural networks, and in nearest neighbor search (as
we will discuss shortly).

We first construct a probabilistic polynomial for MAJ on 𝑛 inputs with error 𝜀
and degree 𝑂(

√︀
𝑛 log(1/𝜀)). This matches a classical Ω(

√︀
𝑛 log(1/𝜀)) degree lower

bound due to Razborov [Raz87] and Smolensky [Smo87]; they originally introduced
probabilistic polynomials and proved this degree lower bound in order to show a
circuit lower bound, that MAJ cannot be computed by AC0 circuits.

We then show it is possible to circumvent Razborov and Smolensky’s lower bound
and achieve even lower degree polynomials. To do this, we consider a new generaliza-
tion of a probabilistic polynomial which we call a probabilistic polynomial threshold
function (probabilistic PTF). While a probabilistic polynomial for a function 𝑓 must
exactly compute 𝑓 on any given input with high probability, a probabilistic PTF must
only output a positive real number when 𝑓 is true, and a negative real number when
𝑓 is false, with high probability. It is easy to construct a degree 1 probabilistic PTF
for MAJ (in fact, randomness isn’t even needed), but we aim to design a probabilistic
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PTF for an OR of many MAJ functions, which is much less straightforward. One
way to do this is to sum together independent copies of our probabilistic polynomial
for MAJ, resulting in a probabilistic PTF for an OR of 𝑂(1/𝜀) different MAJs, each
on 𝑛 inputs, with degree 𝑂(

√︀
𝑛 log(1/𝜀)). However, we are able to improve on this

construction and achieve degree only 𝑂(𝑛1/3 log2/3(𝑛/𝜀)). Our construction combines
ideas from the design of randomized algorithms with 100-year-old constructions from
polynomial approximation theory, especially the Chebyshev polynomials [Che99].

New Nearest Neighbor Search Algorithms Next, in Chapter 8, we apply our
polynomial constructions to design new algorithms as well as prove new lower bounds.
Our main algorithmic application is for nearest neighbor search problems. In the
(batch) nearest neighbor search problem, one is given as input 𝑛 data points, and
𝑛 query points, and the goal is to find the nearest data point to each query point.
Nearest neighbor search has applications in almost every domain, including computa-
tional geometry, coding theory, pattern recognition, and DNA sequencing. There are,
of course, many different settings of this problem depending on the specific details.

First, one needs to specify what types of data points can be input, and how one
should measure the distance between them. Some natural choices include:
∙ points from the 𝑑-dimensional Boolean hypercube, {0, 1}𝑑, with distance mea-

sured by the Hamming distance, which counts the number of the 𝑑 entries in
which two points differ,
∙ points from 𝑑-dimensional Euclidean space, R𝑑, with distance measured by the

standard Euclidean metric,
∙ points which are 𝑑-dimensional vectors of real numbers, from R𝑑, along with

a different distance measure like the ℓ1 distance (also known as Manhattan
distance), and
∙ points which are subsets of a large universe, with distance measured by the

Jaccard index, which equals the ratio of the size of the symmetric difference
and the size of the union of the two sets.

Second, one needs to choose whether exact nearest neighbors are necessary, or whether
approximate nearest neighbors are sufficient. In the (1 + 𝜀)-approximate nearest
neighbor problem for some small constant 𝜀 > 0, it is sufficient to find, for each query
point, a data point which is within a (1+𝜀) factor of the distance to the actual nearest
data point. In many applications, finding approximate nearest neighbors is sufficient,
and such a relaxation can allow for substantially faster algorithms.

In all these choices of settings, there is a brute force quadratic-time algorithm,
which simply iterates over all pairs of points and computes their distances. However,
quadratic time can be too slow in applications with many data points! Using the
polynomial method, we give the fastest known, subquadratic time algorithm for
∙ the approximate problem for all of the aforementioned distance measures, and
∙ the exact problem for most of the distance measures, in high dimensions where

subquadratic time algorithms weren’t previously known.
To give two examples:

For the exact batch nearest neighbor search problem with Hamming distance, in
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dimension 𝑑 = 𝑐 log 𝑛, we design an algorithm with running time 𝑛2−1/ ̃︀𝑂(
√
𝑐). For any

constant 𝑐, this is a truly subquadratic running time (i.e. time 𝑂(𝑛2−𝛿) for some
constant 𝛿 > 0). Previously, no truly subquadratic time algorithm was known even
in dimension, say, 𝑑 = 2 log 𝑛.

For the (1+𝜀)-approximate batch nearest neighbor search problem with Hamming
distance, in any dimension 𝑑, we design an algorithm with running time 𝑑𝑛+𝑛2−̃︀Ω(𝜀1/3).
This algorithm runs in subquadratic time, even up to dimension 𝑑 = 𝑛1−𝛿. For
small enough constant 𝜀 > 0, this improves on the previous best running time of
𝑑𝑛+𝑛2−Ω(𝜀1/2) [Val15], as well as running times of 𝑑𝑛+𝑛2−Ω(𝜀) which one can achieve
using techniques like Locality-Sensitive Hashing [IM98].

We also achieve nearly identical results for Euclidean distance, ℓ1 distance, Jaccard
distance, and many other choices of distance measure instead of Hamming distance.
We complement our algorithms with new conditional lower bounds, showing that if
one can design algorithms which are significantly faster than the ones we design here,
it would refute a popular conjecture from complexity theory (the ‘Strong Exponential
Time Hypothesis’ [IPZ01]) about the time required to solve the Boolean satisfiability
problem.

Because threshold functions are so versatile, we apply our polynomial construc-
tions to other applications as well, including basic problems in data analysis and statis-
tics, constraint satisfaction problems like MAX-SAT, and new circuit lower bounds for
circuits with threshold gates.

Part III: Probabilistic Rank and Matrix Rigidity

Informally, a matrix is called rigid if it has high rank, and one must change many of
its entries before it has low rank. Of course there are parameters involved: the rank-𝑟
rigidity of a 𝑁 ×𝑁 matrix 𝑀 , denoted R𝑀(𝑟), is the minimum number of entries of
𝑀 which one must change in order to make its rank at most 𝑟.

Consider, for example, the 𝑁 ×𝑁 identity matrix 𝐼𝑁 . Although 𝐼𝑁 has full rank,
it is not particularly rigid: each time a 1 on the diagonal changes to a 0, the rank of
𝐼𝑁 decreases by one. Hence, for all ranks 𝑟, we have R𝐼𝑁 (𝑟) ≤ 𝑁 − 𝑟. In fact, since
changing one entry of a matrix can never decrease the rank by more than one, the
identity matrix 𝐼𝑁 is as non-rigid as a full rank matrix can be!

The above example can be summarized by saying that the identity matrix is not
rigid because it is sparse. We could try to get around this to find a rigid matrix by
considering simple dense matrices instead, like perhaps the 𝑁 ×𝑁 upper triangular
matrix 𝑈𝑁 with all 1s above the diagonal. However, with some work one can show
that 𝑈𝑁 isn’t very rigid either. We could then move on to even more complicated
matrices like a Vandermonde or Fourier matrix, and although these seem more rigid,
it’s hard to prove that this is the case. In fact, it’s an open problem to show that any
explicit matrices, like these, are rigid (for certain parameters we describe in the next
paragraph).

Finding explicit rigid matrices has been a central open challenge in complexity
ever since the notion of rigidity was introduced by Leslie Valiant in 1977 [Val77]. At
a high level, rigid matrices are of interest because they are “inherently complicated”:
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following the outline of using rank methods for proving lower bounds, complexity
theorists have shown that explicit rigid matrices would yield new lower bounds for
several different models of computation. The two most interesting rigidity parameter
regimes for a family {𝑀𝑁}𝑁∈N of matrices, where 𝑀𝑁 is a 𝑁 × 𝑁 matrix, are as
follows:

∙ {𝑀𝑁}𝑁∈N is called Valiant-rigid if there is a constant 𝜀 > 0 such that

R𝑀𝑁
(𝑁/ log log𝑁) ≥ Ω(𝑁1+𝜀).

Valiant [Val77] showed that the linear transformations corresponding to Valiant-
rigid matrices cannot be computed by 𝑂(𝑁)-size 𝑂(log𝑁)-depth arithmetic
circuits. There are currently no known lower bounds showing that such circuits
cannot compute any explicit families of matrices.

∙ {𝑀𝑁}𝑁∈N is called Razborov-rigid if there is any super-constant function
𝛼(𝑁) = 𝜔(1) such that

R𝑀𝑁
(2(log log𝑁)𝛼(𝑁)

) ≥ Ω(𝑁2).

Razborov [Raz89] (see also [Wun12]) showed that if the communication matrix
𝑀𝑓 of a Boolean function 𝑓 is Razborov-rigid, then 𝑓 is not in PHcc, the commu-
nication analogue of the polynomial hierarchy. There are currently no explicit
Boolean functions known to be outside PHcc.

In other words, 𝑀𝑁 is Valiant-rigid if you have to change a super-linear number of its
entries to make its rank drop to barely sublinear, and𝑀𝑁 is Razborov-rigid if reducing
it to a tiny rank requires changing a constant fraction of its entries. Showing that
an explicit family of matrices {𝑀𝑁}𝑁∈N is rigid in either regime would imply new,
breakthrough lower bounds in complexity theory.

We have used the word ‘explicit’ a number of times; what does it mean? We
say {𝑀𝑁}𝑁∈N is explicit if there is a deterministic algorithm which, on input 𝑁 ,
outputs the matrix 𝑀𝑁 in poly(𝑁) time. Aiming for a deterministic algorithm is
important, since random matrices are known to be very rigid. For instance, for
any rank 𝑟 = 𝑜(𝑁), a random {0, 1} matrix 𝑀𝑁 ∈ {0, 1}𝑁×𝑁 over any field has
rigidity R𝑀𝑁

(𝑟) ≥ Ω(𝑁2) with high probability, and is hence both Valiant-rigid and
Razborov-rigid. This is not particularly exciting, since random functions are already
known to require large circuits and inefficient communication protocols. Aiming for
a poly(𝑁) time construction is also important since, with enough time, an algorithm
could simply brute force over, say, every 𝑁 × 𝑁 matrix over F2, and compute the
rigidity of every one. Beyond these details, finding and understanding explicit rigid
matrices is important, since these are matrices which are efficiently computable in
one sense, but inherently inefficient in other (e.g. can’t be computed by super-linear
size circuits or PHcc protocols).

To summarize: although rigidity was defined more than 40 years ago, and explicit
rigid matrices are known to have many important applications throughout complexity
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theory, there are still no known constructions of explicit rigid matrices. In Part III
of this dissertation, we make new progress on this problem, both by explaining the
weakness of current attempts at proving matrices are rigid, and by giving new non-
trivial constructions of rigid matrices. We approach the problem by combining linear
algebra with techniques from algorithm design and complexity theory which haven’t
been used before in this setting, including fast matrix multiplication algorithms, the
polynomial method, and a new generalization of matrix rank which we call proba-
bilistic rank.

Hadamard Matrices Are Not Rigid Among the many attempts to prove lower
bounds via rigidity, perhaps the most commonly studied explicit matrix has been the
Walsh-Hadamard transform [PS88, Alo90, Gri, Nis, KR98, Cod00, Lok01, LTV03,
Mid05, dW06b, Ras16]. The Walsh-Hadamard transform is a family of matrices
{𝐻𝑛}𝑛∈N with 𝐻𝑛 ∈ {−1, 1}2𝑛×2𝑛 , defined recursively as:

𝐻1 =

(︂
1 1
1 −1

)︂
, and 𝐻𝑛+1 =

(︂
𝐻𝑛 𝐻𝑛

𝐻𝑛 −𝐻𝑛

)︂
for 𝑛 ≥ 1.

𝐻𝑛 is a Hadamard matrix (i.e. its rows are mutually orthogonal) corresponding to the
discrete Fourier transform for the power of the cyclic group 𝐶𝑛

2 , and it has applications
in areas like quantum computing, signal processing, and data compression. These
properties were believed to imply that𝐻𝑛 must be rigid; in fact, many of the references
above were working toward proving that every Hadamard matrix is rigid. The best
known rigidity lower bounds for 𝐻𝑛 for rank 𝑟 are that R𝐻𝑛(𝑟) ≥ Ω(4𝑛/𝑟), which is
insufficient to show they are Valiant-rigid or Razborov-rigid.

In Chapter 10, we partially explain why these rigidity lower bounds are not
stronger: we refute the popular conjecture that 𝐻𝑛 is rigid, and show that it is not
Valiant-rigid, by giving a new rigidity upper bound. More precisely, letting 𝑁 = 2𝑛

be the side-length of 𝐻𝑛, we show that for every field F, and all sufficiently small
constants 𝜀 > 0,

R𝐻𝑛(𝑁1−Θ̃(𝜀2)) ≤ 𝑁1+𝜀

over F. The choice of field F can sometimes make a difference in how rigid a matrix
is (for instance, 𝐻𝑛 has constant rank over F2), but our rigidity upper bound works
over any field.

Our proof makes use of a new generalization of matrix rank we introduce, called
probabilistic rank. Generalizing the notion of a probabilistic polynomial, we say that
a matrix 𝐻 has probabilistic rank 𝑟 for error 𝜀 if there is a distributionℳ on matrices
of the same dimensions as 𝐻 and rank at most 𝑟 such that, for every entry 𝐻[𝑖, 𝑗] of
the matrix 𝐻, we have

Pr
𝑀∼ℳ

[𝐻[𝑖, 𝑗] = 𝑀 [𝑖, 𝑗]] ≥ 1− 𝜀.

It is not hard to see that a ‘typical’ matrix 𝑀 from the probabilistic matrix ℳ is a
rank 𝑟 matrix which differs from 𝐻 in only an 𝜀 fraction of its entries, hence giving
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a rigidity upper bound for 𝐻. However, in principle, there could be better rigidity
upper bounds than this, since a rigidity upper bound only requires a small total
number of errors, whereas a probabilistic matrix is required to have a low probability
of error on every entry of 𝐻. In fact, we show that the two notions are equivalent for
many families of matrices including the Walsh-Hadamard transform 𝐻𝑛, so it suffices
to focus on giving probabilistic rank upper bounds for 𝐻𝑛.

Our new probabilistic rank upper bounds are inspired by our earlier use of the
polynomial method in algorithm design. In order to show probabilistic rank upper
bounds, we show that probabilistic rank also generalizes probabilistic polynomial
degree. When using the polynomial method to design new algorithms, we used the
fact that low-degree polynomials which compute the entries of a matrix give rank
upper bounds for that matrix. Similarly, if the entries of a matrix are computed by
low-degree probabilistic polynomials, then the same connection gives a probabilistic
rank upper bound for that matrix. Our rigidity upper bound for 𝐻𝑛 critically makes
use of a new probabilistic polynomial construction for most of the rows and columns
of 𝐻𝑛.

Efficient Construction of Rigid Matrices in PNP Finally, in Chapter 11, we
give a new construction of rigid matrices. We give a family of matrices {𝑀𝑁}𝑁∈N,
with 𝑀𝑁 ∈ {0, 1}𝑁×𝑁 , which is Razborov-rigid (infinitely often), and which can
be constructed in deterministic poly(𝑁) time with access to an NP oracle. More
precisely, for infinitely many 𝑁 , our 𝑁 ×𝑁 matrix 𝑀𝑁 has the rigidity bound

R𝑀𝑁
(2(log𝑁)1/4−𝜀

) ≥ Ω(𝑁2)

for any 𝜀 > 0 over any constant-sized finite field F𝑞.
This is the first nontrivial construction of Razborov-rigid matrices which doesn’t

use randomness. Although it doesn’t qualify as an explicit construction in the sense
we previously described (since the construction uses an NP oracle), it still implies a
number of new lower bounds in complexity theory in conjunction with the various
known applications of rigid matrices, including:

∙ There is a function in TIME[2(log𝑛)𝜔(𝑛)
]NP which is not in PHcc. Here, PHcc is the

communication complexity analogue of the polynomial hierarchy, consisting of
functions with efficient communication protocols that can make use of alternat-
ing nondeterministic and co-nondeterministic guesses by the two players. It was
previously even open whether every function in the larger class TIME[2𝑂(𝑛)]NP

is also in AMcc, an important subclass of PHcc.

∙ Depth-2 linear circuits for computing the linear transformation defined by the
𝑁×𝑁 matrix 𝑀𝑁 described above require size Ω(𝑁 ·2(log𝑁)1/4−𝜀

). The previous
best nontrivial such lower bounds for non-randomly constructed matrices were
at best Ω(𝑁 · log2𝑁/ log log𝑁).

Our construction takes a very different approach from past attempts at construct-
ing rigid matrices. While past constructions have mainly used tools from algebra and

21



combinatorics, our construction is instead inspired by circuit complexity theory. The
main idea is to view low-rank expressions for matrices as a special type of ‘circuit
class’ for computing matrices. In this way, finding a rigid matrix is equivalent to
proving a certain average-case lower bound against these ‘circuits’.

In order to prove this circuit lower bound, we use the algorithmic approach in-
troduced by Williams [Wil13]. Very roughly, Williams’ approach shows that fast,
deterministic algorithms for analyzing circuits (e.g. for counting the number of sat-
isfying assignments to a circuit) can be used to prove lower bounds against those
circuits. Tools from linear algebra, algorithm design, and complexity theory come
into play as we design the appropriate circuit analysis algorithm and use it to prove
our rigidity bound. For instance, we use an algorithm for counting the number of 1s
in a low-rank matrix by Chan and Williams [CW16], which applies the polynomial
method and fast matrix multiplication.

1.3 Bibliographic Details
This dissertation is based off of the results in eight previously published papers:

∙ ‘Further Limitations of the Known Approaches for Matrix Multiplication’ with
Virginia Vassilevska Williams [AW18a], which appeared in ITCS 2018,

∙ ‘Limits on All Known (and Some Unknown) Approaches to Matrix Multipli-
cation’ with Virginia Vassilevska Williams [AW18b], which appeared in FOCS
2018,

∙ ‘Limits on the Universal Method for Matrix Multiplication’ [Alm19b], which
appeared in CCC 2019 and won the Best Student Paper Award,

∙ ‘Probabilistic Polynomials and Hamming Nearest Neighbors’ with Ryan
Williams [AW15], which appeared in FOCS 2015,

∙ ‘Polynomial Representations of Threshold Functions and Algorithmic Applica-
tions’ with Timothy M. Chan and Ryan Williams [ACW16], which appeared in
FOCS 2016,

∙ ‘An Illuminating Algorithm for the Light Bulb Problem’ [Alm19a], which ap-
peared in SOSA 2019,

∙ ‘Probabilistic Rank and Matrix Rigidity’ with Ryan Williams [AW17], which
appeared in STOC 2017, and

∙ ‘Efficient Construction of Rigid Matrices Using an NP Oracle’ with Lijie
Chen [AC19], which will appear in FOCS 2019.

See the Introduction to each Part for more specific details about which results corre-
spond to each reference.
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Chapter 2

Preliminaries

We assume familiarity with basic facts about algorithms, complexity, combinatorics,
probability, and algebra (especially linear algebra and properties of polynomials).
That said, in this Chapter, we will review some of the less common notions from
these areas which will play important roles throughout this dissertation. We begin
first by discussing the notation we will use.

2.1 Notation

Sets, Vectors, and Matrices We use the standard notation for common sets of
numbers: Z is the set of integers, N := {1, 2, 3, . . .} is the set of natural numbers, R
is the set of real numbers, and C is the set of complex numbers. For 𝑛 ∈ N, we write
[𝑛] := {1, 2, . . . , 𝑛}, and Z𝑛 := Z/𝑛Z to denote the integers mod 𝑛.

For any set 𝑆, 𝑛 ∈ N, 𝑖 ∈ [𝑛], and 𝑛-dimensional vector 𝑣 ∈ 𝑆𝑛, we write 𝑣𝑖 ∈ 𝑆
for the 𝑖th entry of 𝑣. We may sometimes write 𝑣(𝑖) or 𝑣[𝑖] instead of 𝑣𝑖 to avoid
ambiguity with other subscripts; the meaning should be clear from context. When
we say 𝑣 ∈ 𝑆𝑛 is ‘indexed by 𝑋’ for a set 𝑋 of size |𝑋| = 𝑛, we implicitly define a
bijection 𝑚𝑋 : 𝑋 → [𝑛], and for 𝑥 ∈ 𝑋 define 𝑣𝑥 := 𝑣𝑚𝑋(𝑥).

Similarly, for a 𝑛×𝑚 matrix 𝑀 ∈ 𝑆𝑛×𝑚 over set 𝑆, and for 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚],
we write 𝑀(𝑖, 𝑗) (or sometimes 𝑀 [𝑖, 𝑗]) for the (𝑖, 𝑗)th entry of 𝑀 . We may also write
𝑀 [𝑖, :] for the 𝑖th row of 𝑀 , or 𝑀 [:, 𝑗] for the 𝑗th column of 𝑀 . If 𝑋, 𝑌 are sets of
size |𝑋| = 𝑛 and |𝑌 | = 𝑚, then we can index the entries of 𝑀 by 𝑋, 𝑌 and refer to
entry 𝑀(𝑥, 𝑦) for 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 (using similar implicit bijections 𝑚𝑋 and 𝑚𝑌 as
above).

Logarithms and Asymptotics We write log𝑏 for the base 𝑏 logarithm. We also
write log for log2 and ln for log𝑒 for short.

We use the standard symbols from asymptotic analysis: 𝑂, 𝑜,Ω, 𝜔, and Θ. We
write 𝑓 = poly(𝑛) if there is a constant 𝑐 ≥ 0 such that 𝑓(𝑛) = 𝑂(𝑛𝑐), and write
polylog(𝑛) := poly(log(𝑛)). If 𝑓, 𝑔 are functions of many variables including 𝑛, we
write 𝑓 = 𝑂𝑛(𝑔) to mean that 𝑓 = 𝑂(𝑔) when 𝑛 grows and all variables other than 𝑛
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are fixed to any constant values. We write 𝑓 = �̃�(𝑔) to ignore polylog factors, i.e. if
there is a constant 𝑐 ∈ Z such that 𝑓 = 𝑂(𝑔 · log𝑐(𝑔)). Define Ω̃ similarly.

Boolean functions A Boolean function is a function 𝑓 : {0, 1}𝑛 → {0, 1} for some
𝑛 ∈ N, where we think of 0 as ‘false’ and 1 as ‘true’. Some simple Boolean functions
which will recur include:

∙ OR, which outputs 1 unless all its inputs are 0. We sometimes also write OR𝑛

to emphasize the number 𝑛 of inputs.

∙ AND, which outputs 1 when all its inputs are 1.

∙ XOR, which outputs 1 when an odd number of its inputs are 1. For 𝑥, 𝑦 ∈ {0, 1}
we will write 𝑥 ⊕ 𝑦 := XOR(𝑥, 𝑦), and for 𝑥 ∈ {0, 1}𝑛 we write

⨁︀𝑛
𝑖=1 𝑥𝑖 :=

XOR(𝑥1, . . . , 𝑥𝑛). (The symbol ⊕ will also be used for direct sum, but it will be
clear from context which of the two meanings we are using.)

∙ MOD𝑚 for 𝑚 ∈ N, which outputs 1 when a multiple of 𝑚 of its inputs are 1. In
particular, for any 𝑥 ∈ {0, 1}𝑛, MOD2(𝑥) = 1− XOR(𝑥).

∙ MAJ (MAJORITY), which outputs 1 when at least half of its inputs are 1.

For 𝑥 ∈ {0, 1}𝑛, we write |𝑥| :=
∑︀𝑛

𝑖=1 𝑥𝑖 ∈ Z to denote the Hamming weight of 𝑥.
A Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} is called symmetric if 𝑓(𝑥) = 𝑓(𝑦) for any
𝑥, 𝑦 ∈ {0, 1}𝑛 such that |𝑥| = |𝑦|. All the aforementioned Boolean functions are
symmetric.

For a logical predicate 𝑃 , we use Iverson bracket notation [𝑃 ] to denote the func-
tion which outputs 1 when 𝑃 is true, and 0 when 𝑃 is false. For instance, for
𝑥 ∈ {0, 1}𝑛, we have MAJ(𝑥) = [|𝑥| ≥ 𝑛/2]. Brackets ‘[, ]’ will also be used as paren-
theses for emphasis in some places; the meaning should be clear from context.

Groups, Rings, and Fields We will typically use multiplicative notation for the
group operation of groups. Two particular groups which will arise frequently are, for
𝑛 ∈ N, the cyclic group 𝐶𝑛 of order 𝑛, and the symmetric group 𝑆𝑛 of permutations
on 𝑛 elements.

Every ring 𝑅 has two distinguished elements: the additive identity 0 and the
multiplicative identity 1. When using 𝑅 to represent a Boolean function, we will use
0 to denote ‘false’ and 1 to denote ‘true’. The characteristic of a ring 𝑅 is the smallest
𝑛 ∈ N such that

1 + 1 + · · ·+ 1⏟  ⏞  
𝑛 times

= 0

over 𝑅 if such an 𝑛 exists, and 0 if there is no such 𝑛. When 0 ̸= 1 (i.e. when 𝑅 is
not the trivial ring with one element) then the characteristic is never 1. In this case,
when 𝑐 is the characteristic of 𝑅, there is a natural (and unique) ring homomorphism
from Z to 𝑅 whose range is Z𝑐 (or Z when 𝑐 = 0). Hence, polynomials over Z can also

24



be viewed as polynomials over any commutative ring 𝑅 where we take all outputs
mod 𝑐 (and in particular, do not change the values 0 and 1).

When 𝑅 is a commutative ring, for 𝑛 ∈ N and 𝑥, 𝑦 ∈ 𝑅𝑛, we write ⟨𝑥, 𝑦⟩𝑅 :=∑︀𝑛
𝑖=1 𝑥𝑖𝑦𝑖. When the ring 𝑅 is clear from context, we omit it and simply write ⟨𝑥, 𝑦⟩.
When 𝑞 ∈ N is a power of a prime, we write F𝑞 for the finite field of order 𝑞.

2.2 Boolean and Arithmetic Circuits
We study two types of circuits:

∙ Boolean circuits, whose inputs are Boolean ({0, 1}) values, and whose gates
compute Boolean functions of their inputs (the default gates are AND, OR, and
NOT), and

∙ Arithmetic circuits over a field F, whose inputs are values from F, and whose
gates compute F-valued functions of their inputs (the default gates are + and×).
Arithmetic circuits may also take constant values from F as input in addition
to the usual inputs. One can more generally consider arithmetic circuits over a
ring.

Boolean Circuits The depth, size, fan-in, and set of allowed gates can drastically
change what functions can be computed by a given class of circuits. The classes we
will encounter in this dissertation include:

∙ AC0: functions computable by families of constant-depth unbounded fan-in
polynomial-size circuits over the basis (set of gates) {AND,OR,NOT}

∙ AC0[𝑚]: functions computable by families of constant-depth unbounded fan-in
polynomial-size circuits over the basis {AND,OR,NOT,MOD𝑚}

∙ ACC0: the union of AC0[𝑚] for all 𝑚 ≥ 2

∙ TC0: functions computable by families of constant-depth unbounded fan-in
polynomial-size circuits over the basis {AND,OR,NOT,MAJ}

It is known that
AC0 ( AC0[𝑚] ( ACC0 ⊆ TC0.

It is believed that MAJ /∈ ACC0, and hence that ACC0 ( TC0, but this is still an open
problem.

We will also study the class LTF of linear threshold functions, i.e. Boolean func-
tions 𝑓 : {0, 1}𝑛 → {0, 1} of the form 𝑓(𝑥) = [

∑︀𝑛
𝑖=1 𝑎𝑖𝑥𝑖 ≥ 𝑡] for constants 𝑎 ∈ R𝑛

and 𝑡 ∈ R. For instance, MAJ ∈ LTF.
For classes of circuits 𝒞 and 𝒟, we write 𝒞 ∘ 𝒟 to denote the class of circuits

consisting of a single circuit 𝐶 ∈ 𝒞 whose inputs are the outputs of some circuits from
𝒟. That is, 𝒞 ∘ 𝒟 is simply the composition of circuits from 𝒞 and 𝒟. For instance,
LTF ∘ LTF denotes “depth-two linear threshold circuits”, LTF ∘MOD2 denotes “linear
threshold function of parities”, etc.
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Arithmetic Circuits Since arithmetic circuits only use + and × gates, they always
compute sets of polynomials in their inputs. It is natural to ask why arithmetic
circuits do not typically allow for ÷ gates. In fact, it is known that allowing ÷ gates
can only save polynomial factors in arithmetic circuit size:

Proposition 2.1 ([Str73, HY09]). If a polynomial 𝑓 ∈ F[𝑥1, . . . , 𝑥𝑛] of degree 𝑟 can
be computed by an arithmetic circuit of size 𝑠 using +,×,÷, then it can be computed
by an arithmetic circuit of size poly(𝑠, 𝑟, 𝑛) using only +,×.

This answer is unsatisfying in situations where we care about precise polyno-
mial factors, such as in the design of matrix multiplication algorithms. However,
Strassen [Str73] also showed that divisions do not help, even by constant additive
or multiplicative factors in the circuit size, when computing sets of quadratic forms
(such as matrix multiplication).

One type of arithmetic circuit which will be of particular interest to us is a Linear
circuit. In such a circuit, each gate computes a F-linear combination of its inputs.
Hence, linear circuits can only compute linear transformations of their inputs. In
other words, linear circuits with 𝑛 inputs and 𝑚 outputs correspond to matrices
𝐴 ∈ F𝑚×𝑛, such that given as input 𝑥 ∈ F𝑛, the circuit outputs 𝐴𝑥. It is known that
any arithmetic circuit for computing a linear transformation can be converted into a
linear circuit for the same linear transformation with only constant factor increases
in the size and depth (see e.g. [BCS13, Theorem 13.1]).

2.3 Models of Communication
In a communication protocol Π for a function 𝐹 : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1}, two
players, each given one of 𝑥, 𝑦 ∈ {0, 1}𝑛, send each other messages in order to compute
𝐹 (𝑥, 𝑦). The number of bits of communication used in Π is the maximum, over all
𝑥, 𝑦 ∈ {0, 1}𝑛, of the sum of the lengths of the messages (as binary strings) that the
players send to each other. See [KN97] for more details.

Starting with [BFS86], a growing line of work has studied the communication
complexity analogues of different classical complexity classes. The most relevant
communication complexity classes for us will be:

∙ Pcc: Functions 𝐹 : {0, 1}𝑛×{0, 1}𝑛 → {0, 1} which can be computed by a deter-
ministic communication protocol using only polylog(𝑛) bits of communication.

∙ NPcc: Functions 𝐹 : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1} which can be written as⋁︀𝑘
𝑖=1𝑅𝑖(𝑥, 𝑦), where 𝑘 ≤ poly(𝑛), and each 𝑅𝑖 is a rectangle, i.e. a function

of the form 𝑅𝑖(𝑥, 𝑦) = [𝑥 ∈ 𝑆𝑋 ∧ 𝑦 ∈ 𝑆𝑦] for subsets 𝑆𝑋 , 𝑆𝑌 ⊆ {0, 1}𝑛. (This
can be viewed as a communication protocol where the two players nondeter-
ministically guess which rectangle is satisfied by their inputs.)

∙ AMcc: Functions 𝐹 : {0, 1}𝑛×{0, 1}𝑛 → {0, 1} such that there is a distribution
𝒟 on NPcc protocols Π, such that for any 𝑥, 𝑦 ∈ {0, 1}𝑛 we have PrΠ∼𝒟[𝐹 (𝑥, 𝑦) =
Π(𝑥, 𝑦)] ≥ 2/3.
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∙ PHcc: Functions 𝐹 : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1} which can be computed by a
formula which is a poly(𝑛)-ary tree of constant depth, where each gate computes
an AND or an OR, and each leaf computes a rectangle of the inputs.

Similar to the classical complexity setting, we know that

Pcc ⊆ NPcc ⊆ AMcc ⊆ PHcc.

Further communication complexity classes can similarly be defined in a natural way.
For instance, MOD𝑚Pcc consists of functions 𝐹 : {0, 1}𝑛×{0, 1}𝑛 → {0, 1} which can
be written as a MOD𝑚 of poly(𝑛) many rectangles, and BP · MOD𝑚Pcc consists of
functions which can be computed with high probability on every input by distribu-
tions on MOD𝑚Pcc protocols. See [GPW18], for instance, for more about the known
relationships between these and other communication complexity classes.

2.4 Tail Bounds and Probabilistic Tools

We assume familiarity with standard tools from probability, including the union
bound, Markov’s inequality, Chernoff bounds, and Chebyshev’s inequality. We will
occasionally pay particular attention to the constants in tail bounds on Binomial
distributions, by applying the following instantiation:

Lemma 2.1 (Hoeffding’s Inequality for Binomial Distributions [Hoe63, Theorem 1]).
If 𝑚 independent random draws 𝑥1, . . . , 𝑥𝑚 ∼ {0, 1} are made with Pr[𝑥𝑖 = 1] = 𝑝 for
all 𝑖, then for any 𝑘 ≤ 𝑚𝑝 we have

Pr

[︃
𝑚∑︁
𝑖=1

𝑥𝑖 ≤ 𝑘

]︃
≤ exp

(︂
−2(𝑚𝑝− 𝑘)2

𝑚

)︂
,

where exp(𝑥) = 𝑒𝑥.

When designing deterministic algorithms, we will also need a Chernoff bound for
samples with limited independence:

Lemma 2.2 ([SSS95, Theorem 5 (I)(b)]). If 𝑋 is the sum of 𝑘-wise independent
random variables, each of which is confined to the interval [0, 1], with 𝜇 = E[𝑋],
𝛿 ≤ 1, and 𝑘 = ⌊𝛿2𝜇𝑒−1/3⌋, then

Pr[|𝑋 − 𝜇| ≥ 𝛿𝜇] ≤ 𝑒−𝛿2𝜇/3.

2.5 Bounds on Binomial Coefficients

We now present some standard bounds on the growth of binomial and multinomial
coefficients. We will make use of these bounds throughout this dissertation.
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Proposition 2.2. For all 𝑛, 𝑘 ∈ N with 1 ≤ 𝑘 ≤ 𝑛, we have(︁𝑛
𝑘

)︁𝑘
≤
(︂
𝑛

𝑘

)︂
<
(︁𝑛 · 𝑒

𝑘

)︁𝑘
.

Proof. The lower bound follows since:(︂
𝑛

𝑘

)︂
=

𝑘−1∏︁
𝑖=0

𝑛− 𝑖
𝑘 − 𝑖

≥
𝑘−1∏︁
𝑖=0

𝑛

𝑘
=
(︁𝑛
𝑘

)︁𝑘
.

For the upper bound, first recall from the Taylor series for 𝑒𝑥 that

𝑒𝑘 =
∞∑︁
𝑖=0

𝑘𝑖

𝑖!
>
𝑘𝑘

𝑘!
.

Rearranging gives that 𝑘! > (𝑘/𝑒)𝑘. It thus follows that:(︂
𝑛

𝑘

)︂
=

∏︀𝑘−1
𝑖=0 𝑛− 𝑖
𝑘!

≤
∏︀𝑘−1

𝑖=0 𝑛

𝑘!
=
𝑛𝑘

𝑘!
<
(︁𝑛 · 𝑒

𝑘

)︁𝑘
.

The bound from Proposition 2.2, which shows that
(︀
𝑛
𝑘

)︀
= Θ(𝑛/𝑘)𝑘, will be suffi-

cient in most cases where we need to use bounds on binomial coefficients. However,
in some cases where 𝑛 and 𝑘 are both large, we will need a tighter bound on the
constant hidden by the Θ.

Definition 2.1. The binary entropy function 𝐻 : [0, 1]→ [0, 1] is given by

𝐻(𝑥) = 𝑥 log
1

𝑥
+ (1− 𝑥) log

1

1− 𝑥
,

where we define 𝐻(0) = 𝐻(1) = 0. Hence, 2𝐻(𝑝) = 1
𝑝𝑝·(1−𝑝)1−𝑝 .

Proposition 2.3. For any 𝑛 ∈ N and any 𝑝 ∈ [0, 1] such that 𝑝 · 𝑛 is an integer, we
have

1

𝑛+ 1
2𝑛·𝐻(𝑝) ≤

(︂
𝑛

𝑝 · 𝑛

)︂
≤ 2𝑛·𝐻(𝑝).

Proof. We can verify that the claim is true when 𝑝 = 0 or 𝑝 = 1, so assume 𝑝 ∈ (0, 1).
Define 𝑇 : {0, 1, . . . , 𝑛} → R by 𝑇 (𝑘) =

(︀
𝑛
𝑘

)︀
· 𝑝𝑘 · (1− 𝑝)𝑛−𝑘. Notice in particular that

𝑇 (𝑝 · 𝑛) =

(︂
𝑛

𝑝 · 𝑛

)︂
· 𝑝𝑝𝑛 · (1− 𝑝)(1−𝑝)𝑛 =

(︂
𝑛

𝑝 · 𝑛

)︂
· 2−𝑛·𝐻(𝑝).

Our goal is hence to prove that

1

𝑛+ 1
≤ 𝑇 (𝑝 · 𝑛) ≤ 1.
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We have that 𝑇 (𝑘) > 0 for all 𝑘, and the binomial theorem says that

𝑛∑︁
𝑘=0

𝑇 (𝑘) = (𝑝+ (1− 𝑝))𝑛 = 1.

In particular, the upper bound 𝑇 (𝑝 · 𝑛) ≤ 1 immediately follows.
Next, to prove the lower bound, it is sufficient to show that 𝑇 (𝑝 ·𝑛) ≥ 𝑇 (𝑘) for all

𝑘. This will imply that 𝑇 (𝑝 · 𝑛) is at least the average value of all the 𝑇 (𝑘)’s, which
by the binomial theorem above, is at least 1/(𝑛+ 1).

More precisely, we will prove that 𝑇 (𝑘)− 𝑇 (𝑘 + 1) is nonnegative when 𝑘 ≥ 𝑝 · 𝑛,
and nonpositive when 𝑘 ≤ 𝑝 · 𝑛. This will imply that (𝑇 (𝑘))0≤𝑘≤𝑛 is a unimodal
sequence with maximum at 𝑝 · 𝑛. To see this, note that

𝑇 (𝑘)− 𝑇 (𝑘 + 1) =

(︂
𝑛

𝑘

)︂
· 𝑝𝑘 · (1− 𝑝)𝑛−𝑘 −

(︂
𝑛

𝑘 + 1

)︂
· 𝑝𝑘+1 · (1− 𝑝)𝑛−𝑘−1

=

(︂
𝑛

𝑘

)︂
· 𝑝𝑘 · (1− 𝑝)𝑛−𝑘 ·

(︂
1− 𝑛− 𝑘

𝑘 + 1
· 𝑝

1− 𝑝

)︂
.

Hence, 𝑇 (𝑘)−𝑇 (𝑘+1) ≥ 0 if and only if (𝑛−𝑘) ·𝑝 ≤ (𝑘+1) ·(1−𝑝), which rearranges
to 𝑘 ≥ 𝑝 · 𝑛 − (1 − 𝑝). Since (1 − 𝑝) ∈ (0, 1), but the argument 𝑘 to 𝑇 must be an
integer, this means that 𝑇 (𝑘)− 𝑇 (𝑘 + 1) ≥ 0 if and only if 𝑘 ≥ 𝑝 · 𝑛, as desired.

We will also use the following estimate of 𝐻(𝑝) when 𝑝 is close to 1/2:

Proposition 2.4. For 𝜀 ∈ (0, 1/2) we have 𝐻(1
2
− 𝜀) = 1−Θ(𝜀2).

Proof. This follows from the Taylor expansion of 𝐻(𝑝) about 𝑝 = 1/2:

𝐻

(︂
1

2
− 𝜀
)︂

= 1− 1

2 ln 2

∞∑︁
𝑖=1

(2𝜀)2𝑖

𝑖 · (2𝑖− 1)
= 1−Θ(𝜀2).

Corollary 2.1. We have (︂
𝑛

(1/2− 𝜀)𝑛

)︂
= 2𝑛−Θ(𝜀2𝑛)

for 𝜀 ∈ (0, 1/2) and 𝑛 ∈ N such that (1/2− 𝜀)𝑛 is an integer.

2.5.1 Multinomial Coefficients

Definition 2.2. For 𝑚 ∈ N and nonnegative integers 𝑘1, 𝑘2, . . . , 𝑘𝑚 with 𝑛 = 𝑘1 +
𝑘2 + · · ·+ 𝑘𝑚, the multinomial coefficient

(︀
𝑛

𝑘1,𝑘2,...,𝑘𝑚

)︀
is given by(︂

𝑛

𝑘1, 𝑘2, . . . , 𝑘𝑚

)︂
=

𝑛!

𝑘1! · 𝑘2! · · · 𝑘𝑚!
=

𝑚∏︁
𝑖=1

(︂
𝑘1 + 𝑘2 + · · ·+ 𝑘𝑖

𝑘𝑖

)︂
.
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Multinomial coefficients have a combinatorial interpretation similar to that of
binomial coefficients:

(︀
𝑛

𝑘1,𝑘2,...,𝑘𝑚

)︀
counts the number of ways to put 𝑛 distinct objects

into 𝑚 distinct buckets such that 𝑘𝑖 objects are put into the 𝑖th bucket for each
𝑖 ∈ [𝑚]. We will make use of the following approximation, which follows directly by
applying Proposition 2.3:

Proposition 2.5. For any 𝑚 ∈ N and any constants 𝑝1, 𝑝2, . . . , 𝑝𝑚 ∈ [0, 1] such that
𝑝1 + 𝑝2 + · · ·+ 𝑝𝑚 = 1, we have(︂

𝑛

𝑝1 · 𝑛, 𝑝2 · 𝑛, . . . , 𝑝𝑚 · 𝑛

)︂
=

(︂
1

𝑝𝑝11 · 𝑝
𝑝2
2 · · · 𝑝

𝑝𝑚
𝑚

)︂𝑛+𝑜(𝑛)

for all 𝑛 ∈ N such that 𝑝𝑖 · 𝑛 is an integer for all 𝑖 ∈ [𝑚].
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Part I

Limitations on Matrix Multiplication
Algorithms
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Chapter 3

Background and Overview

One of the biggest open questions in computer science asks how quickly one can
multiply two matrices. Progress on this problems is measured by giving bounds on
𝜔, the exponent of matrix multiplication, defined as the smallest real number such
that two 𝑛× 𝑛 matrices over a field can be multiplied using 𝑛𝜔+𝜀 field operations for
any 𝜀 > 0. Trivially, 2 ≤ 𝜔 ≤ 3. Many have conjectured over the years that 𝜔 = 2,
and this conjecture is very attractive: a near-linear time algorithm for MM would
immediately imply near-optimal algorithms for many problems.

Almost 50 years have passed since Strassen [Str69] first showed that 𝜔 ≤ 2.81 < 3.
Since then, an impressive toolbox of techniques has been developed to obtain faster
MM algorithms, culminating in the current best bound 𝜔 < 2.373 [LG14, Wil12].
Unfortunately, this bound is far from 2, and the current methods seem to have reached
a standstill. Recent research has turned to proving limitations on the two main MM
algorithmic techniques: the Laser Method of Strassen [Str86] and the Group-theoretic
Method of Cohn and Umans [CU03].

Both Coppersmith and Winograd [CW90] and Cohn et al. [CKSU05] proposed
conjectures which, if true, would imply that 𝜔 = 2. The first conjecture works in
conjunction with the Laser Method, and the second with the Group-theoretic method.
The first “technique limitation” result was by Alon, Shpilka and Umans [ASU13]
who showed that both conjectures would contradict the widely believed Sunflower
conjecture of Erdös and Rado.

Ambainis, Filmus and Le Gall [AFLG15] formalized the specific implementation
of the Laser Method proposed by Coppersmith and Winograd [CW90] which is used
in the recent papers on MM. They gave limitations of this implementation, and in
particular showed that the exact approach used in [CW90, DS13, LG14, Wil12] cannot
achieve a bound on 𝜔 better than 2.3078. The analyzed approach, the “Laser Method
with Merging”, is a bit more general than the approaches in [CW90, DS13, LG14,
Wil12]: in a sense it corresponds to a dream implementation of the exact approach.

Blasiak et al. [BCC+17a] considered the Group-theoretic Method for developing
MM algorithms proposed by Cohn and Umans [CU03], and showed that this approach
cannot prove 𝜔 = 2 using any fixed abelian group. In follow-up work, Sawin [Saw18]
extended this to any fixed non-abelian group, and Blasiak et al. [BCC+17b] extended
it to a host of families of non-abelian groups.
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All these limitations proven so far are for very specific attacks on proving 𝜔 = 2.
While the proofs of [AFLG15] apply directly to 𝐶𝑊𝑞, they only apply to the restricted
Laser Method with Merging, and no longer apply to slight changes to this. The proofs
in [BCC+17a] and [BCC+17b] are tailored to the Group-theoretic Method and do not
apply (for instance) to the Laser Method on “non-group” tensors.

3.1 Our Results

3.1.1 The Universal Method

The key to Strassen’s algorithm is an algebraic identity showing how 2×2×2 matrix
multiplication can be computed surprisingly efficiently. In particular, Strassen showed
that the 2 × 2 × 2 matrix multiplication tensor has tensor rank at most 7; see the
beginning of Chapter 4 for precise definitions). Arguing about the ranks of larger
matrix multiplication tensors has proven to be quite difficult – in fact, even the rank
of the 3 × 3 × 3 matrix multiplication tensor isn’t currently known. Progress on
bounding 𝜔 since Strassen’s algorithm has thus taken the following approach: Pick a
tensor (trilinear form) 𝑇 , typically not a matrix multiplication tensor, such that

∙ Powers 𝑇⊗𝑛 of 𝑇 can be efficiently computed (i.e. 𝑇 has low asymptotic rank),
and

∙ 𝑇 is useful for performing matrix multiplication, since large matrix multiplica-
tion tensors can be ‘reduced to’ powers of 𝑇 .

Combined, these give an upper bound on the rank of matrix multiplication itself, and
hence 𝜔.

In Chapter 4, we define a new very general method for analyzing tensors to give
MM algorithms, which we call the Universal Method. In the Universal Method, the
notion of ‘reduction’ between tensors we use is a degeneration. Degenerations are the
most general type of reduction known to preserve the ranks of tensors as required for
the above approach. In other words, the Universal Method captures the most general
sense in which one can use 𝑇 to design MM algorithms. We write 𝜔𝑢(𝑇 ) to denote
the best bound one can prove on 𝜔 by applying the Universal Method to 𝑇 .

We also define two weaker methods: the Galactic Method applied to 𝑇 , in which
the ‘reduction’ must be a more restrictive monomial degeneration, resulting in the
bound 𝜔𝑔(𝑇 ) on 𝜔, and the Solar Method applied to 𝑇 , in which the ‘reduction’ must
be an even more restrictive zeroing out, resulting in the bound 𝜔𝑠(𝑇 ) on 𝜔. Since
monomial degenerations and zeroing outs are successively more restrictive types of
degenerations, we have that for all tensors 𝑇 ,

𝜔 ≤ 𝜔𝑢(𝑇 ) ≤ 𝜔𝑔(𝑇 ) ≤ 𝜔𝑠(𝑇 ).

These methods are very general ; there are no known methods for computing 𝜔𝑢(𝑇 ),
𝜔𝑔(𝑇 ), or 𝜔𝑠(𝑇 ) for a given tensor 𝑇 , and these quantities are even unknown for very
well-studied tensors 𝑇 .
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The two main approaches to designing matrix multiplication algorithms are the
Laser Method of Strassen [Str87] and the Group-Theoretic Method of Cohn and
Umans [CU03]. Both of these approaches show how to give upper bounds on 𝜔𝑠(𝑇 )
for particular structured tensors 𝑇 (and hence upper bound 𝜔 itself). We will conclude
Chapter 4 by giving an overview of these two methods, and describing how they are
special cases of the Solar Method, emphasising that the Universal Method affords an
algorithm designer much more power than is taken advantage of by these methods.

3.1.2 Limits on the Universal Method

The Coppersmith-Winograd Tensor

Both the Laser Method and the Group-theoretic Method give ways to find zeroing
outs of tensors into matrix multiplication tensors, but not necessarily the best zeroing
outs. In fact, it is known that the Laser Method does not always give the best
zeroing out for a particular tensor 𝑇 , since the improvements from [CW90] to later
works [DS13, Wil12, LG14] can be seen as giving slight improvements to the Laser
Method to find better and better zeroing outs1. The Group-Theoretic Method, like
the Solar Method, is very general, and it is not clear how to optimally apply it to a
particular group or family of groups.

All of the improvements on bounding 𝜔 for the past 30+ years have come from
studying the Coppersmith-Winograd family of tensors {𝐶𝑊𝑞}𝑞∈N. The Laser Method
applied to powers of 𝐶𝑊5 gives the bound 𝜔𝑠(𝐶𝑊5) ≤ 2.3729. The Group-Theoretic
Method can also prove the best known bound 𝜔 ≤ 2.3729, by simulating the Laser
Method analysis of 𝐶𝑊𝑞 (see e.g. [AW18a] for more details). Despite a long line
of work on matrix multiplication, there are no known tensors2 which seem to come
close to achieving the bounds one can obtain using 𝐶𝑊𝑞. This leads to the first main
question of this Part of the dissertation:

Question 3.1. How much can we improve our bound on 𝜔 using a more clever
analysis of the Coppersmith-Winograd tensor?

To resolve Question 3.1, we prove a new lower bound for the Coppersmith-
Winograd tensor in Chapter 5:

Theorem 3.1. 𝜔𝑢(𝐶𝑊𝑞) ≥ 2.16805 for all 𝑞.

Thus, if one starts with the CW tensor which has led to all improve-
ments on 𝜔 for the last 30+ years, even if one uses the Universal method
which vastly generalizes all known approaches, one cannot prove a better
bound than 2.16805 on 𝜔. We also give stronger lower bounds for particular tensors

1These works apply the Laser Method to higher powers of the tensor 𝑇 = 𝐶𝑊𝑞, a technique
which is still captured by the Solar Method.

2The author and Vassilevska Williams [AW18b] study a generalization of 𝐶𝑊𝑞 which can tie the
best known bound, but its analysis is identical to that of 𝐶𝑊𝑞. Our lower bounds in this paper will
apply equally well to this generalized class as to 𝐶𝑊𝑞 itself.
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in the family. For instance, for the specific tensor 𝐶𝑊5 which yields the current best
bound on 𝜔, we show 𝜔𝑢(𝐶𝑊5) ≥ 2.21912 . . ..

Our proof of Theorem 3.1 proceeds by upper bounding 𝑆(𝐶𝑊𝑞), the asymptotic
slice rank of 𝐶𝑊𝑞; we will show that for any tensor 𝑇 , non-trivial upper bounds on
𝑆(𝑇 ) imply non-trivial lower bounds on 𝜔𝑢(𝑇 ). The slice rank of a tensor, denoted
𝑆(𝑇 ), was first introduced by Blasiak et al. [BCC+17a] in the context of lower bounds
against the Group-Theoretic Method. In order to study degenerations of powers of
tensors, rather than just tensors themselves, we need to study an asymptotic version
of slice rank, 𝑆. This is important since the slice rank of a product of two tensors
can be greater than the product of their slice ranks, and as we will show, 𝑆(𝐶𝑊⊗𝑛

𝑞 )
is much greater than 𝑆(𝐶𝑊𝑞)

𝑛 for big enough 𝑛.
We will give three different tools for proving upper bounds on 𝑆(𝑇 ) for many

different tensors 𝑇 . They will imply our lower bound on the Universal Method for
𝐶𝑊𝑞 as well as many other tensors of interest, including: the same lower bound
𝜔𝑢(𝐶𝑊𝑞,𝜎) ≥ 2.16805 for any generalized Coppersmith-Winograd tensor 𝐶𝑊𝑞,𝜎 (a
new class of tensors we define which slightly modify the structure of 𝐶𝑊𝑞), a similar
lower bound for 𝑐𝑤𝑞,𝜎, the generalized ‘simple’ Coppersmith-Winograd tensor missing
its ‘corner terms’, and a lower bound for 𝑇𝑞, the structural tensor of the cyclic group
𝐶𝑞, matching the lower bounds obtained by [BCC+17a]. In Section 5.5 we give tables
of our precise lower bounds for these and other tensors.

We briefly note that our lower bound of 2.16805 > 2 + 1
6

in Theorem 3.1 may be
significant when compared to the recent algorithm of Cohen, Lee and Song [CLS18]
which solves 𝑛-variable linear programs in time about 𝑂(𝑛𝜔 + 𝑛2+1/6).

The Laser Method is “Complete”

The second main question of this part concerns the Laser Method. The Laser Method
upper bounds 𝜔𝑠(𝑇 ) for any tensor 𝑇 with certain structure (which we describe in
detail in Section 5.4), and has led to every improvement on 𝜔 since its introduction
by Strassen [Str87].

Question 3.2. When the Laser Method applies to a tensor 𝑇 , how close does it come
to optimally analyzing 𝑇?

We call 𝑇 laser-ready if the Laser Method (as used by [CW90] on 𝐶𝑊𝑞) applies
to it; see Definition 5.1 for the precise definition. Tensors need certain structure to
be laser-ready, but tensors 𝑇 with this structure are essentially the only ones for
which successful techniques for upper bounding 𝜔𝑢(𝑇 ) are known. In fact, every
record-holding tensor in the history of matrix multiplication algorithm design has
been laser-ready.

As discussed, we know the Laser Method does not always give a tight bound
on 𝜔𝑠(𝑇 ) for laser-ready 𝑇 . For instance, Coppersmith-Winograd [CW90] applied
the Laser Method to 𝐶𝑊𝑞 to prove 𝜔𝑠(𝐶𝑊𝑞) ≤ 2.376, and then later work [DS13,
Wil12, LG14] analyzed higher and higher powers of 𝐶𝑊𝑞 to show 𝜔𝑠(𝐶𝑊𝑞) ≤ 2.373.
Ambainis, Filmus and Le Gall [AFLG15] showed that analyzing higher and higher
powers of 𝐶𝑊𝑞 itself with the Laser Method cannot yield an upper bound better than
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𝜔𝑠(𝐶𝑊𝑞) ≤ 2.3725. What about for other tensors? Could there be a tensor such that
applying the Laser Method to 𝑇 yields 𝜔𝑠(𝑇 ) ≤ 𝑐 for some 𝑐 > 2, but applying the
Laser Method to high powers 𝑇⊗𝑛 of 𝑇 yields 𝜔𝑠(𝑇 ) = 2? Could applying an entirely
different method to such a 𝑇 , using arbitrary degenerations and not just zeroing outs,
show that 𝜔𝑢(𝑇 ) = 2?

We show that for any laser-ready tensor 𝑇 , the Laser Method can be used to
prove a lower bound on 𝑆(𝑇 ). Moreover, we will see that this lower bound matches
the upper bound on 𝑆(𝑇 ) implied by one of our tools, Theorem 5.3. We will use this
to give an intriguing answer to Question 3.2:

Theorem 3.2. If 𝑇 is a laser-ready tensor, and the Laser Method applied to 𝑇 yields
the bound 𝜔𝑢(𝑇 ) ≤ 𝑐 for some 𝑐 > 2, then 𝜔𝑢(𝑇 ) > 2.

To reiterate: If 𝑇 is any tensor to which the Laser Method applies (as in Defi-
nition 5.1), and the Laser Method does not yield 𝜔 = 2 when applied to 𝑇 , then in
fact 𝜔𝑢(𝑇 ) > 2, and even the substantially more general Universal Method applied
to 𝑇 cannot yield 𝜔 = 2. Hence, the Laser Method, which was originally used as an
algorithmic tool, can also be seen as a lower bounding tool. Conversely, Theorem 3.2
shows that the Laser Method is “complete”, in the sense that it cannot yield a bound
on 𝜔 worse than 2 when applied to a tensor which is able to prove 𝜔 = 2.

Another consequence of our proof is that, whenever 𝑇 is a laser-ready tensor, we
will be able to prove matching upper and lower bounds on 𝑆(𝑇 ). As mentioned, this
includes every record-holding tensor in the history of MM algorithms, including 𝐶𝑊𝑞,
𝑐𝑤𝑞, and all the other tensors we study in Section 5.5. Hence, for these tensors 𝑇 , no
better lower bound on 𝜔𝑢(𝑇 ) is possible by arguing only about 𝑆(𝑇 ).

Theorem 3.2 explains and generalizes a number of phenomena:

∙ The fact that Coppersmith-Winograd [CW90] applied the Laser Method to the
tensor 𝐶𝑊𝑞 and achieved an upper bound greater than 2 on 𝜔 implies that
𝜔𝑢(𝐶𝑊𝑞) > 2, and no arbitrary degeneration of powers of 𝐶𝑊𝑞 can yield 𝜔 = 2.

∙ As mentioned above, it is known that applying the Laser Method to higher
and higher powers of a tensor 𝑇 can successively improve the resulting upper
bound on 𝜔. Theorem 3.2 shows that if the Laser Method applied to the first
power of any tensor 𝑇 did not yield 𝜔 = 2, then this sequence of Laser Method
applications (which is a special case of the Universal method) must converge to
a value greater than 2 as well. This generalizes the result of Ambainis, Filmus
and Le Gall [AFLG15], who proved this about applying the Laser Method to
higher and higher powers of the specific tensor 𝑇 = 𝐶𝑊𝑞.

∙ Our result also generalizes the result of Kleinberg, Speyer and Sawin [Kle97],
where it was shown that (what can be seen as) the Laser Method achieves
a tight lower bound on 𝑆(𝑇 𝑙𝑜𝑤𝑒𝑟

𝑞 ), matching the upper bound of Blasiak et
al. [BCC+17a]. Indeed, 𝑇 𝑙𝑜𝑤𝑒𝑟

𝑞 , the lower triangular part of 𝑇𝑞, is a laser-ready
tensor.
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3.1.3 Additional Results

In our study of tensors and slice rank, we will also prove a number of new, comple-
mentary results.

Asymptotic Subrank Equals Asymptotic Slice Rank for Laser-Ready Ten-
sors

Our proof of Theorem 3.2 also sheds light on a notion related to the asymptotic
slice rank 𝑆(𝑇 ) of a tensor 𝑇 , called the asymptotic subrank �̃�(𝑇 ) of 𝑇 . �̃� is a
“dual” notion of asymptotic rank, and it is important in the definition of Strassen’s
asymptotic spectrum of tensors [Str87]. While the asymptotic rank of 𝑇 can be
thought of as the ‘cost’ of 𝑇 , the asymptotic subrank can be thought of as its ‘value’.

It is not hard to see that �̃�(𝑇 ) ≤ 𝑆(𝑇 ) for all tensors 𝑇 . However, there are no
known separations between the two notions; whether there exists a tensor 𝑇 such
that �̃�(𝑇 ) < 𝑆(𝑇 ) is an open question. As a Corollary of Theorem 3.2, we prove:

Corollary 3.1. Every laser-ready tensor 𝑇 has �̃�(𝑇 ) = 𝑆(𝑇 ).

Since, as discussed above, almost all of the most-studied tensors are laser-ready, this
might help explain why we have been unable to separate the two notions.

The Structural Tensors of Group Algebras

We also study the relationship between the generalized 𝐶𝑊 tensors and the structural
tensors of group algebras (the tensors which arise in the Group-theoretic Method).
Our new results include:

1. All Finite Groups Suffice for Current 𝜔 Bounds. We show that every
finite group 𝐺 has a monomial degeneration to some generalized CW tensor of
parameter 𝑞 = |𝐺| − 2. Thus, applying the Galactic method on 𝑇𝐺 for every 𝐺
(with sufficiently small asymptotic rank, i.e. �̃�(𝑇𝐺) = |𝐺|) can yield the current
best bounds on 𝜔.

2. New Tri-Colored Sum-Free Set Constructions. Tri-Colored Sum-Free
Sets are subsets of a group 𝐺 which arise in extremal combinatorics. We show
that, for every finite group 𝐺, there is a constant 𝑐|𝐺| > 2/3 depending only on
|𝐺| such that its 𝑛th tensor power 𝐺𝑛 has a tri-colored sum-free set of size at
least |𝐺|𝑐|𝐺|𝑛−𝑜(𝑛). For moderate |𝐺|, the constant 𝑐|𝐺| is quite a bit larger than
2/3. To our knowledge, such a general result was not known until now.

3.2 Other Related Work

Probabilistic Tensors and Support Rank Cohn and Umans [CU13] introduced
the notion of the support rank of tensors, and showed that upper bounds on the
support rank of matrix multiplication tensors can be used to design faster Boolean
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matrix multiplication algorithms. Recently, Karppa and Kaski [KK19] used ‘proba-
bilistic tensors’ as another way to design Boolean matrix multiplication algorithms.

In fact, our tools for proving asymptotic slice rank upper bounds can be used to
prove lower bounds on these approaches as well. For instance, our results imply that
finding a ‘weighted’ matrix multiplication tensor as a degeneration of a power of 𝐶𝑊𝑞

(in order to prove a support rank upper bound) cannot result in a better exponent
for Boolean matrix multiplication than 2.16805.

This is because ‘weighted’ matrix multiplication tensors can degenerate into inde-
pendent tensors just as large as their unweighted counterparts. Similarly, if a prob-
abilistic tensor 𝒯 is degenerated into a (probabilistic) matrix multiplication tensor,
Karppa and Kaski show that this gives a corresponding support rank expression for
matrix multiplication as well, and so upper bounds on 𝑆(𝑇 ) for any 𝑇 in the support
of 𝒯 also result in lower bounds on this approach.

Rectangular Matrix Multiplication Our tools can also be used to prove lower
bounds on approaches to designing rectangular matrix multiplication algorithms. For
instance, the best known rectangular matrix multiplication algorithms [LGU17] show
that powers of 𝐶𝑊𝑞 zero out into large rectangular matrix multiplication tensors.
Using the fact that 𝐶𝑊𝑞 is variable-symmetric, this implies a corresponding upper
bound on 𝜔𝑢(𝐶𝑊𝑞), which our tools give a lower bound against; see Section 4.5 for
details.

Slice Rank Upper Bounds Our limitation results critically make use of upper
bounds on the asymptotic slice rank of 𝐶𝑊𝑞 and other tensors of interest. Slice
rank was first introduced by Tao [Tao16] in a symmetric formulation of the recent
proof of the capset bound [CLP17, EG17], which shows how to prove slice rank
upper bounds using the ‘polynomial method’. Since then, a number of papers have
focused on proving slice rank upper bounds for many different tensors. Sawin and
Tao [TS16, Proposition 6] show slice rank upper bounds by studying the combinatorics
of the support of the power of a fixed tensor, and Naslund and Sawin [NS17] use
that approach to study sunflower-free sets3; one of our slice rank bounding tools,
Theorem 5.3, uses this type of approach applied to blocked tensors. Slice rank was
first used in the context of matrix multiplication by Blasiak et al. [BCC+17a], and this
line of work has led to more techniques for proving slice rank upper bounds, including
connections to the notion of instability from geometric invariant theory [BCC+17a],
and a generalization of the polynomial method to the nonabelian setting [BCC+17b].

Concurrent Work Building off of our work [AW18b], Christandl, Vrana and Zuid-
dam [CVZ19] independently proved lower bounds on 𝜔𝑢, including a bound match-
ing Theorem 3.1. Their bounds use the seemingly more complicated machinery of
Strassen’s asymptotic spectrum of tensors [Str91]. They thus phrase their results in

3In fact, the tensor 𝑇 whose slice rank is bounded in [NS17, Section 3] can be viewed as a
change of basis of a Generalized Simple Coppersmith-Winograd tensor 𝑐𝑤𝑞,𝜎 which we study below
in Section 5.5.2
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terms of the asymptotic subrank �̃�(𝑇 ) of tensors rather than the asymptotic slice
rank 𝑆(𝑇 ), and the fact that their bounds are often the same as ours is related to the
fact we prove, in Corollary 3.1, that �̃�(𝑇 ) = 𝑆(𝑇 ) for all of the tensors we study.

3.3 Bibliographic Details
This Part of the dissertation is based off of the results in three previously published
papers:

∙ ‘Further Limitations of the Known Approaches for Matrix Multiplication’ with
Virginia Vassilevska Williams [AW18a], which appeared in ITCS 2018,

∙ ‘Limits on All Known (and Some Unknown) Approaches to Matrix Multipli-
cation’ with Virginia Vassilevska Williams [AW18b], which appeared in FOCS
2018, and

∙ ‘Limits on the Universal Method for Matrix Multiplication’ [Alm19b], which
appeared in CCC 2019 and won the Best Student Paper Award.

Chapter 4 primarily presents results from [AW18b], and Chapter 5 primarily
presents results from [Alm19b], except that Subsection 5.5.4 and Section 5.6 come
from [AW18b], and Theorem 5.5 follows the proof of [AW18a, Lemma 4.1].

40



Chapter 4

The Universal Method

In this chapter, we introduce the relevant notions and notation related to tensors
and matrix multiplication (MM) algorithms. We will give an overview of the known
approaches to designing MM algorithms, including the Laser Method and the Group-
theoretic Method, and then we will define a new, vast generalization of these ap-
proaches which we call the Universal Method. In the next Chapter, we will prove new
limitation results against the Universal Method.

4.1 Tensors and Tensor Rank
The mathematical objects of interest in the study of MM algorithms are called tensors
(or 3-tensors). Recall that a 𝑞 × 𝑟 matrix 𝑀 over a field F can be viewed in many
equivalent ways, including:

∙ a 2-dimensional grid of numbers (𝑀𝑖𝑗)𝑖∈[𝑞],𝑗∈[𝑟] ∈ F𝑞×𝑟,

∙ a linear map 𝑀 : F𝑞 → F𝑟,

∙ a bilinear map 𝑀 : F𝑞 × F𝑟 → F.

Analogously, a 𝑞 × 𝑟 × 𝑠 tensor 𝑇 can be viewed in a number of different ways,
including:

∙ a hypermatrix, i.e. a 3-dimensional grid of numbers (𝑇𝑖𝑗𝑘)𝑖∈[𝑞],𝑗∈[𝑟],𝑘∈[𝑠] ∈ F𝑞×𝑟×𝑠,

∙ a bilinear map 𝑇 : F𝑞 × F𝑟 → F𝑠,

∙ a trilinear map 𝑇 : F𝑞 × F𝑟 × F𝑠 → F.

In this dissertation, we will focus on the equivalent view of tensors which I find
simplest: as a trilinear polynomial.

For sets 𝑋 = {𝑥1, . . . , 𝑥𝑞}, 𝑌 = {𝑦1, . . . , 𝑦𝑟}, and 𝑍 = {𝑧1, . . . , 𝑧𝑠} of formal
variables, a tensor over 𝑋, 𝑌, 𝑍 is a trilinear form

𝑇 =
∑︁

𝑥𝑖∈𝑋,𝑦𝑗∈𝑌,𝑧𝑘∈𝑍

𝛼𝑖𝑗𝑘𝑥𝑖𝑦𝑗𝑧𝑘,
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where the 𝛼𝑖𝑗𝑘 coefficients come from an underlying field F (the field F can typically
be thought of as the complex numbers C). The terms, which we write as 𝑥𝑖𝑦𝑗𝑧𝑘, are
sometimes written as 𝑥𝑖 ⊗ 𝑦𝑗 ⊗ 𝑧𝑘 in the literature. We say 𝑇 is minimal for 𝑋, 𝑌, 𝑍
if, for each 𝑥𝑖 ∈ 𝑋, there is a term involving 𝑥𝑖 with a nonzero coefficient in 𝑇 , and
similarly for 𝑌 and 𝑍 (i.e. 𝑇 can’t be seen as a tensor over a strict subset of the
variables). For two tensors 𝑇1, 𝑇2, we write 𝑇1 = 𝑇2, if they are equal up to renaming
or reindexing variables.

The main measure of the complexity of a tensor is its rank. A tensor 𝑇 has rank
one if there are values 𝑎𝑖 ∈ F for each 𝑥𝑖 ∈ 𝑋, 𝑏𝑗 ∈ F for each 𝑦𝑗 ∈ 𝑌 , and 𝑐𝑘 ∈ F for
each 𝑧𝑘 ∈ 𝑍, such that the coefficient 𝛼𝑖𝑗𝑘 of 𝑥𝑖𝑦𝑗𝑧𝑘 in 𝑇 is 𝑎𝑖𝑏𝑗𝑐𝑘, or in other words,

𝑇 =
∑︁

𝑥𝑖∈𝑋,𝑦𝑗∈𝑌,𝑧𝑘∈𝑍

𝑎𝑖𝑏𝑗𝑐𝑘 · 𝑥𝑖𝑦𝑗𝑧𝑘 =

(︃∑︁
𝑥𝑖∈𝑋

𝑎𝑖𝑥𝑖

)︃⎛⎝∑︁
𝑦𝑗∈𝑌

𝑏𝑗𝑦𝑗

⎞⎠(︃∑︁
𝑧𝑘∈𝑍

𝑐𝑘𝑧𝑘

)︃
. (4.1)

The rank of a tensor 𝑇 , denoted 𝑅(𝑇 ), is the smallest number of rank one tensors
whose sum (as polynomials, i.e. summing the coefficient of each term individually) is
𝑇 . This is analogous to the rank of a matrix: a matrix 𝑀 has rank one if it can be
written as the outer product of two vectors (the expression (4.1) can be seen as the
outer product of three vectors), and more generally the rank of 𝑀 is the minimum
number of rank one matrices whose sum gives 𝑀 .

4.2 Matrix Multiplication Tensors

We now define the primary family of tensors of interest in the study of MM algorithms.
For positive integers 𝑎, 𝑏, 𝑐, the matrix multiplication tensor ⟨𝑎, 𝑏, 𝑐⟩ is a tensor over
{𝑥𝑖𝑗}𝑖∈[𝑎],𝑗∈[𝑏], {𝑦𝑗𝑘}𝑗∈[𝑏],𝑘∈[𝑐], {𝑧𝑘𝑖}𝑘∈[𝑐],𝑖∈[𝑎] given by

⟨𝑎, 𝑏, 𝑐⟩ =
𝑎∑︁

𝑖=1

𝑏∑︁
𝑗=1

𝑐∑︁
𝑘=1

𝑥𝑖𝑗𝑦𝑗𝑘𝑧𝑘𝑖. (4.2)

The tensors ⟨𝑎, 𝑏, 𝑐⟩ can be seen as a ‘generating function’ for 𝑎 × 𝑏 × 𝑐 matrix mul-
tiplication: the coefficient of 𝑧𝑘𝑖 in ⟨𝑎, 𝑏, 𝑐⟩ is exactly the (𝑖, 𝑘) entry in the matrix
product ⎛⎜⎜⎜⎝

𝑥11 𝑥12 · · · 𝑥1𝑏
𝑥21 𝑥22 · · · 𝑥2𝑏
...

... . . . ...
𝑥𝑎1 𝑥𝑎2 · · · 𝑥𝑎𝑏

⎞⎟⎟⎟⎠×
⎛⎜⎜⎜⎝
𝑦11 𝑦12 · · · 𝑦1𝑐
𝑦21 𝑦22 · · · 𝑦2𝑐
...

... . . . ...
𝑦𝑏1 𝑦𝑏2 · · · 𝑦𝑏𝑐

⎞⎟⎟⎟⎠ .

In light of this fact, we can design MM algorithm which make use of rank upper
bounds on MM tensors, following the main recursive idea of Strassen’s original algo-
rithm [Str69] (the key identities in Strassen’s algorithm can be interpreted as showing
that 𝑅(⟨2, 2, 2⟩) ≤ 7). We state the result here for square matrix multiplication for
simplicity, but the analogous algorithm works for rectangular matrix multiplication
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as well.

Proposition 4.1 ([Str69]). For any constant 𝑞 ∈ N, if 𝑅(⟨𝑞, 𝑞, 𝑞⟩) ≤ 𝑟 (over a field
F), there is an algorithm which performs 𝑛×𝑛×𝑛 matrix multiplication over F using
𝑂(𝑛log𝑞(𝑟)) field operations.

Proof. Since 𝑅(⟨𝑞, 𝑞, 𝑞⟩) ≤ 𝑟, we can write

⟨𝑞, 𝑞, 𝑞⟩ =
𝑟∑︁

ℓ=1

⎛⎝∑︁
𝑖,𝑗∈[𝑞]

𝑎𝑖𝑗ℓ𝑥𝑖𝑗

⎞⎠⎛⎝∑︁
𝑗,𝑘∈[𝑞]

𝑏𝑗𝑘ℓ𝑦𝑗𝑘

⎞⎠⎛⎝∑︁
𝑘,𝑖∈[𝑞]

𝑐𝑘𝑖ℓ𝑧𝑘𝑖

⎞⎠ , (4.3)

for some coefficients 𝑎𝑖𝑗ℓ, 𝑏𝑗𝑘ℓ, 𝑐𝑘𝑖ℓ ∈ F.
We design a recursive algorithm for multiplying 𝐴,𝐵 ∈ F𝑛×𝑛. We may assume

that 𝑛 is a power of 𝑞 by padding the input matrices with 0s, which increases the
dimension 𝑛 by less than a multiplicative factor of 𝑞.

First, we partition 𝐴 into a 𝑞 × 𝑞 block matrix, where each block is a 𝑛/𝑞 × 𝑛/𝑞
matrix; call the blocks 𝐴𝑖𝑗 for 𝑖, 𝑗 ∈ [𝑞]. We similarly partition 𝐵 into a 𝑞 × 𝑞 block
matrix, and call the blocks 𝐵𝑗𝑘 for 𝑗, 𝑘 ∈ [𝑞]. The algorithm first computes, for each
ℓ ∈ [𝑟], the linear combination

𝐴′
ℓ =

∑︁
𝑖,𝑗∈[𝑞]

𝑎𝑖𝑗ℓ𝐴𝑖𝑗,

and the linear combination
𝐵′

ℓ =
∑︁
𝑗,𝑘∈[𝑞]

𝑏𝑗𝑘ℓ𝐵𝑗𝑘.

Next, for each ℓ ∈ [𝑟], the algorithm computes the (𝑛/𝑞)×(𝑛/𝑞) matrix 𝐶 ′
ℓ := 𝐴′

ℓ×𝐵′
ℓ,

by recursively performing (𝑛/𝑞) × (𝑛/𝑞) × (𝑛/𝑞) matrix multiplication. Finally, for
each 𝑖, 𝑘 ∈ [𝑞], the algorithm computes the linear combination

𝐶𝑘𝑖 =
∑︁
𝑘,𝑖∈[𝑞]

𝑐𝑘𝑖ℓ𝐶
′
𝑘𝑖.

These are the blocks of the 𝑛×𝑛 matrix 𝐶 which we output; indeed, we can see from
(4.3) that for all 𝑘, 𝑖 ∈ [𝑞], the matrix 𝐶𝑘𝑖 is the coefficient of 𝑧𝑘𝑖 in ⟨𝑞, 𝑞, 𝑞⟩ when the
substitutions 𝑥𝑖𝑗 ← 𝐴𝑖𝑗 and 𝑦𝑗𝑘 ← 𝐵𝑗𝑘 are made, and from the definition of ⟨𝑞, 𝑞, 𝑞⟩
that these are exactly the desired output blocks.

Throughout the algorithm, we performed 𝑂(𝑛2) field operations to compute linear
combinations when constructing the 𝐴′

ℓ, 𝐵′
ℓ, and 𝐶𝑘𝑖 matrices, and we performed 𝑟

recursive (𝑛/𝑞)× (𝑛/𝑞)× (𝑛/𝑞) matrix multiplications. Thus, the total number 𝑇 (𝑛)
of field operations satisfies

𝑇 (𝑛) = 𝑟 · 𝑇 (𝑛/𝑞) +𝑂(𝑛2),

which solves1 to 𝑇 (𝑛) = 𝑂(𝑛log𝑞(𝑟)).
1Here we use the known bound 𝑟 > 𝑞2 [CW82, BI13] to avoid additional log(𝑛) factors.
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Note that in Proposition 4.1, we gave a bound on the number of field operations
performed by the algorithm, rather than on the running time of the algorithm. Over a
field like F2 where field operations can be performed in constant time, this distinction
is unimportant, but over larger fields, the field operations may take super-constant
time and contribute to the final running time. Throughout Part I of this dissertation,
we will abstract away this issue by focusing on a model of computation, such as the
arithmetic circuit model, where field operations can be performed in constant time.
Later, in Part II, we will be multiplying matrices of integers, and we will need to
return to this issue.

In light of Proposition 4.1, we define 𝜔, the exponent of matrix multiplication, as

𝜔 := lim inf
𝑞∈N

log𝑞(𝑅(⟨𝑞, 𝑞, 𝑞⟩)).

It follows from Proposition 4.1 that, for any 𝜀 > 0, 𝑛×𝑛×𝑛 matrix multiplication can
be performed in 𝑂(𝑛𝜔+𝜀) field operations. In fact, it is known that in the arithmetic
circuit model, any algorithm for MM (which does not necessarily come from a tensor
rank upper bound, and which may use division over F) can be converted into a tensor
rank upper bound which yields asymptotically the same running time when combined
with Proposition 4.1 (see e.g. [Blä13, Theorem 4.7]). Hence, 𝜔 exactly captures the
arithmetic circuit complexity of MM, and so our goal for designing MM algorithms
is to give upper bounds on the ranks of MM tensors.

Before moving on, we make two notes about the definition of 𝜔. First, using a
lim inf rather than just a min (which would, for instance, allow us to omit the 𝜀 > 0 in
the previous paragraph) is known to be required: Coppersmith and Winograd [CW82]
showed that 𝜔 is a limit point that cannot be achieved by any single algorithm.
Second, our notation in defining 𝜔 is somewhat sloppy, since the rank 𝑅(⟨𝑞, 𝑞, 𝑞⟩)
may depend on the field F of coefficients. It is known that 𝜔 only depends on the
characteristic of F [Sch81], but for instance, it may be the case that 𝜔 over F2 is
different from 𝜔 over C. That said, the best known upper bounds on 𝜔 hold equally
well for all fields, so we will simply refer to 𝜔 without reference to the field F for
simplicity.

What bounds on the ranks of MM tensors are known? Strassen [Str69] showed in
1969 that 𝑅(⟨2, 2, 2⟩) ≤ 7, yielding 𝜔 ≤ log2(7) ≈ 2.81 (see Figure 4-1 below).

The next improved bound came in 1978, when Victor Pan [Pan78] showed that
𝑅(⟨70, 70, 70⟩) ≤ 143640, yielding 𝜔 ≤ log2(7) ≈ 2.80. Since then, a long line of work
has led to the best known bound 𝜔 ≤ 2.372864 [CW82, DS13, Wil12, LG14], which
comes from a bound on 𝑅(⟨𝑞, 𝑞, 𝑞⟩) for a very large value of 𝑞.

In order to handle rank expressions for such large tensors, the known approaches to
designing matrix multiplication algorithms make use of two two key techniques which
we describe next: tensor powers, which allow us to prove properties of large tensors by
arguing only about smaller tensors, and rank-preserving reductions between tensors,
which allow us to argue about tensors 𝑇 other than MM tensors as long we can find
a reduction from MM to 𝑇 .
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⟨2, 2, 2⟩ =(𝑥11 + 𝑥22)(𝑦11 + 𝑦22)(𝑧11 + 𝑧22)

+(𝑥21 + 𝑥22)𝑦11(𝑧21 − 𝑧22)
+𝑥11(𝑦12 − 𝑦22)(𝑧12 + 𝑧22)

+𝑥22(𝑦21 − 𝑦11)(𝑧11 + 𝑧21)

+(𝑥11 + 𝑥12)𝑦22(𝑧12 − 𝑧11)
+(𝑥21 − 𝑥11)(𝑦11 + 𝑦12)𝑧22

+(𝑥12 − 𝑥22)(𝑦21 + 𝑦22)𝑧11

Figure 4-1: Strassen’s algorithm as a rank expression, showing that ⟨2, 2, 2⟩ is a sum
of 7 rank one tensors, and thus 𝑅(⟨2, 2, 2⟩) ≤ 7.

4.3 Tensor Powers and Asymptotic Rank

We first introduce the tensor product. If 𝑇1 is a tensor over 𝑋1, 𝑌1, 𝑍1, and 𝑇2 is a
tensor over 𝑋2, 𝑌2, 𝑍2, then the tensor product 𝑇1⊗ 𝑇2 is a tensor over 𝑋1×𝑋2, 𝑌1×
𝑌2, 𝑍1 × 𝑍2 such that, for any (𝑥1, 𝑥2) ∈ 𝑋1 × 𝑋2, (𝑦1, 𝑦2) ∈ 𝑌1 × 𝑌2, and (𝑧1, 𝑧2) ∈
𝑍1 × 𝑍2, the coefficient of (𝑥1, 𝑥2)(𝑦1, 𝑦2)(𝑧1, 𝑧2) in 𝑇1 ⊗ 𝑇2 is the product of the
coefficient of 𝑥1𝑦1𝑧1 in 𝑇1, and the coefficient of 𝑥2𝑦2𝑧2 in 𝑇2. In other words, if

𝑇1 =
∑︁

𝑥1∈𝑋1
𝑦1∈𝑌1
𝑧1∈𝑍1

𝛼𝑥1𝑦1𝑧1𝑥1𝑦1𝑧1, and 𝑇2 =
∑︁

𝑥2∈𝑋2
𝑦2∈𝑌2
𝑧2∈𝑍2

𝛽𝑥2𝑦2𝑧2𝑥2𝑦2𝑧2,

then, 𝑇1 ⊗ 𝑇2 =
∑︁

(𝑥1,𝑥2)∈𝑋1×𝑋2

(𝑦1,𝑦2)∈𝑌1×𝑌2

(𝑧1,𝑧2)∈𝑍1×𝑍2

𝛼𝑥1𝑦1𝑧1𝛽𝑥2𝑦2𝑧2(𝑥1, 𝑥2)(𝑦1, 𝑦2)(𝑧1, 𝑧2).

The tensor product 𝑇1⊗𝑇2 is exactly the product of 𝑇1 and 𝑇2 as polynomials, except
that instead of viewing the result as a degree 6 polynomial, we continue to view it as
a degree 3 polynomial by merging variables 𝑥1𝑥2 → (𝑥1, 𝑥2) and similarly for the 𝑦
and 𝑧 variables.

The 𝑛th tensor power of a tensor 𝐴, denoted 𝐴⊗𝑛, is the result of taking the tensor
product of 𝑛 copies of 𝐴 together, so 𝐴⊗1 = 𝐴, and 𝐴⊗𝑛 = 𝐴⊗𝐴⊗(𝑛−1). Hence, if 𝑇 is
over 𝑋, 𝑌, 𝑍, then 𝑇⊗𝑛 is over 𝑋𝑛, 𝑌 𝑛, 𝑍𝑛, and its variables are 𝑛-tuples of variables
from 𝑇 . We will use this view in some of our proofs in Chapter 5.

Tensor products interact very nicely with the notions and tensors we have al-
ready introduced. First, for 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2 ∈ N, we have ⟨𝑎1, 𝑏1, 𝑐1⟩ ⊗ ⟨𝑎2, 𝑏2, 𝑐2⟩ =
⟨𝑎1𝑎2, 𝑏1𝑏2, 𝑐1𝑐2⟩. This corresponds to performing 𝑎1𝑎2 × 𝑏1𝑏2 × 𝑐1𝑐2 matrix multipli-
cation using block matrices, reducing the problem to the multiplication of 𝑎1× 𝑏1× 𝑐1
matrices whose entries are 𝑎2 × 𝑏2 and 𝑏2 × 𝑐2 matrices. It particular, it follows that
for all 𝑞, 𝑛 ∈ N, we have ⟨𝑞, 𝑞, 𝑞⟩⊗𝑛 = ⟨𝑞𝑛, 𝑞𝑛, 𝑞𝑛⟩.

Second, for any two tensors 𝐴,𝐵, we always have 𝑅(𝐴 ⊗ 𝐵) ≤ 𝑅(𝐴) · 𝑅(𝐵).
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This follows by combining the distributive property with the fact that the product
of two rank one tensors also has rank one. However, this inequality is often not
tight. For instance, it is known that 𝑅(⟨2, 2, 2⟩) = 7 (the lower bound was shown
by Winograd [Win71]), but for large 𝑛, we can see that 𝑅(⟨2, 2, 2⟩⊗𝑛) ≤ 2𝜔𝑛+𝑜(𝑛) ≤
5.18𝑛+𝑜(𝑛).

This motivates defining the asymptotic rank 2 of a tensor 𝑇 as

�̃�(𝑇 ) := lim inf
𝑛∈N

(𝑅(𝑇⊗𝑛))1/𝑛.

Because of the tensor product properties above, we can alternatively define 𝜔 in a
number of ways:

𝜔 = lim inf
𝑞∈N

log𝑞 𝑅(⟨𝑞, 𝑞, 𝑞⟩) = lim inf
𝑞∈N

log𝑞 �̃�(⟨𝑞, 𝑞, 𝑞⟩) = log2(�̃�(⟨2, 2, 2⟩)).

4.4 Reductions Between Tensors

We now describe four different ways to reduce between tensors. The key property we
would like from a type of reduction is that, if 𝐴 reduces to 𝐵, then �̃�(𝐴) ≤ �̃�(𝐵).
Thus, if we can show that a MM tensor reduces to some tensor 𝑇 , then in order to
prove upper bounds on 𝜔, it suffices to prove upper bounds on �̃�. The four types of
reductions we will define are summarized in Figure 4-2.

Zeroing Out (≤𝑧𝑜)

Monomial Degeneration (E𝑚𝑑) Restriction (≤)

Degeneration (E)

Figure 4-2: The four notions of a reduction between tensors. An arrow ≤0 → ≤1

means that ≤1 subsumes ≤0, meaning that for any tensors 𝐴,𝐵, if 𝐴 ≤0 𝐵, then
𝐴 ≤1 𝐵.

2The asymptotic rank is often written as 𝑅
˜

in the literature, but we instead write �̃� for ease of

notation.
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Zeroing Out The simplest type of reduction is a zeroing out (also called a combi-
natorial restriction). Let 𝐵 be a tensor over 𝑋, 𝑌, 𝑍, and 𝐴 be a tensor over 𝑋 ′, 𝑌 ′, 𝑍 ′

where 𝑋 ′ ⊆ 𝑋, 𝑌 ′ ⊆ 𝑌 , and 𝑍 ′ ⊆ 𝑍. 𝐴 is a zeroing out of 𝐵, denoted 𝐴 ≤𝑧𝑜 𝐵, if for
all 𝑥 ∈ 𝑋 ′, 𝑦 ∈ 𝑌 ′, and 𝑧 ∈ 𝑍 ′, the coefficient of 𝑥𝑦𝑧 in 𝐴 equals the coefficient of 𝑥𝑦𝑧
in 𝐵. In other words, 𝐴 is obtained by setting to zero all 𝑥 ∈ 𝑋 ∖𝑋 ′, 𝑦 ∈ 𝑌 ∖ 𝑌 ′, and
𝑧 ∈ 𝑍∖𝑍 ′. It is not hard to see that if 𝐴 ≤𝑧𝑜 𝐵 then 𝑅(𝐴) ≤ 𝑅(𝐵) and �̃�(𝐴) ≤ �̃�(𝐵),
by applying the same zeroing out to the (asymptotic) rank expression for 𝐵.

Example 4.1. For the tensors

𝐵 = 𝑥0𝑦0𝑧0 + 𝑥1𝑦1𝑧0 + 𝑥1𝑦0𝑧1 + 𝑥0𝑦1𝑧1,

𝐴 = 𝑥0𝑦0𝑧0 + 𝑥1𝑦1𝑧0,

we see that 𝐴 ≤𝑧𝑜 𝐵 by setting 𝑧1 ← 0 in 𝐵, since the terms in 𝐴 are exactly the
terms in 𝐵 that do not contain 𝑧1. By comparison, for the tensor

𝐶 = 𝑥0𝑦0𝑧0 + 𝑥1𝑦1𝑧0 + 𝑥1𝑦0𝑧1,

there is no zeroing out from 𝐵 to 𝐶, since the term 𝑥0𝑦1𝑧1 from 𝐵 we would like to
remove shares each of its variables with a term in 𝐶 that we need to keep.

Although zeroing outs are quite simple, we will see that the best known approaches
to designing MM algorithms only make use of zeroing outs to reduce to MM tensors,
rather than the following more powerful methods.

Monomial Degeneration Let 𝐴,𝐵 be tensors over 𝑋, 𝑌, 𝑍. We say that 𝐴 is a
monomial degeneration of𝐵, denoted 𝐴E𝑚𝑑 𝐵, if the following type of transformation
from 𝐵 to 𝐴 is possible. For a formal variable 𝜆, let 𝑀𝑜𝑛 := {𝜆𝑝 | 𝑝 ∈ Z≥0}. Pick a
map 𝑚 : 𝑋 ∪ 𝑌 ∪ 𝑍 →𝑀𝑜𝑛, then from the tensor

𝐵 =
∑︁

𝑥∈𝑋,𝑦∈𝑌,𝑧∈𝑍

𝛽𝑥𝑦𝑧𝑥𝑦𝑧,

with coefficients from F, consider the transformed tensor

𝐵′ =
∑︁

𝑥∈𝑋,𝑦∈𝑌,𝑧∈𝑍

𝑚(𝑥) ·𝑚(𝑦) ·𝑚(𝑧) · 𝛽𝑥𝑦𝑧𝑥𝑦𝑧,

with coefficients from F[𝜆]. 𝐵′ can alternatively be viewed as a polynomial in 𝜆 whose
coefficients are tensors over𝑋, 𝑌, 𝑍 with coefficients from F. If ℎ is the smallest integer
for which the coefficient of 𝜆ℎ in 𝐵′ is nonzero, and 𝐴 is the coefficient of 𝜆ℎ in 𝐵′,
then this is a monomial degeneration from 𝐵 to 𝐴.

If 𝐴 ≤𝑧𝑜 𝐵, then 𝐴 E𝑚𝑑 𝐵 as well: if 𝐴 is a zeroing out of 𝐵 by setting the
variables in 𝑆 ⊆ 𝑋 ∪ 𝑌 ∪ 𝑍 to zero, then 𝐴 is also a monomial degeneration of 𝐵 by
picking 𝑚(𝑤) = 𝜆 for all 𝑤 ∈ 𝑆, and 𝑚(𝑤) = 1 for all 𝑤 ∈ 𝑋∪𝑌 ∪𝑍 ∖𝑆, since then 𝐴
will be the constant coefficient of the resulting 𝐵′. We will see in Example 4.2 below
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that monomial degeneration strictly subsumes zeroing out. It is not evident that
monomial degenerations should preserve any notion of tensor rank, but Bini [Bin80]
showed that for any tensors 𝐴,𝐵, if 𝐴 ≤𝑚𝑑 𝐵, then �̃�(𝐴) ≤ �̃�(𝐵).

Example 4.2. For the tensors

𝐵 = 𝑥0𝑦0𝑧0 + 𝑥1𝑦1𝑧0 + 𝑥1𝑦0𝑧1 + 𝑥0𝑦1𝑧1,

𝐶 = 𝑥0𝑦0𝑧0 + 𝑥1𝑦1𝑧0 + 𝑥1𝑦0𝑧1,

we see that 𝐶 E𝑚𝑑 𝐵 by picking 𝑚(𝑥0) = 𝑚(𝑦1) = 𝑚(𝑧1) = 𝜆, and 𝑚(𝑥1) = 𝑚(𝑦0) =
𝑚(𝑧0) = 1. The resulting tensor 𝐵′ is

𝐵′ = 𝜆𝑥0𝑦0𝑧0 + 𝜆𝑥1𝑦1𝑧0 + 𝜆𝑥1𝑦0𝑧1 + 𝜆3𝑥0𝑦1𝑧1,

so we have 𝐵′ = 𝜆𝐶 + 𝜆3𝑇 for some tensor 𝑇 . 𝐵 and 𝐶 are the same tensors
from Example 4.1, showing that monomial degeneration is strictly more powerful than
zeroing out.

Restriction Let 𝐴 be a tensor over 𝑋 ′, 𝑌 ′, 𝑍 ′, and 𝐵 be a tensor over 𝑋, 𝑌, 𝑍. We
say 𝐴 is a restriction of 𝐵, denoted 𝐴 ≤ 𝐵, if there are linear maps 𝑀𝑋 : F𝑋 → F𝑋′ ,
𝑀𝑌 : F𝑌 → F𝑌 ′ , 𝑀𝑍 : F𝑍 → F𝑍′ such that 𝐴 = 𝐵 ∘ (𝑀𝑋 ,𝑀𝑌 ,𝑀𝑍). In other words,
if

𝐵 =
∑︁

𝑥∈𝑋,𝑦∈𝑌,𝑧∈𝑍

𝛽𝑥𝑦𝑧𝑥𝑦𝑧,

then
𝐴 =

∑︁
𝑥∈𝑋,𝑦∈𝑌,𝑧∈𝑍

𝛽𝑥𝑦𝑧𝑀𝑋(𝑥)𝑀𝑌 (𝑦)𝑀𝑍(𝑧).

Unlike in zeroing outs and monomial degenerations, we do not need that 𝑋 ′ ⊆ 𝑋, and
it might even be the case that |𝑋 ′| > |𝑋|. If 𝐴 ≤𝑧𝑜 𝐵, then 𝐴 ≤ 𝐵, since a zeroing
out corresponds to a restriction where, for each 𝑥 ∈ 𝑋, we either pick 𝑀𝑋(𝑥) = 𝑥 or
𝑀𝑋(𝑥) = 0 (and similarly for 𝑌 and 𝑍).

Example 4.3. For the tensors

𝐷 = 𝑥+𝑦+𝑧+ + 𝑥−𝑦−𝑧−,

𝐵 = 𝑥0𝑦0𝑧0 + 𝑥1𝑦1𝑧0 + 𝑥1𝑦0𝑧1 + 𝑥0𝑦1𝑧1,

we see that 𝐵 ≤ 𝐷 by picking

𝑥+ ← 𝑥0 + 𝑥1, 𝑦+ ← 𝑦0 + 𝑦1, 𝑧+ =
1

2
(𝑧0 + 𝑧1),

𝑥− ← 𝑥0 − 𝑥1, 𝑦− ← 𝑦0 − 𝑦1, 𝑧− =
1

2
(𝑧0 − 𝑧1).
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The resulting transformation of 𝐷 is

(𝑥0 + 𝑥1)(𝑦0 + 𝑦1)(𝑧0 + 𝑧1) + (𝑥0 − 𝑥1)(𝑦0 − 𝑦1)(𝑧0 − 𝑧1)
2

,

which when expanded gives 𝐵.

The transformation of 𝐷 in Example 4.3 is the sum of two rank one tensors,
showing that 𝐵 has rank at most 2. In fact, restrictions can be used in this way to
exactly characterize rank.

For 𝑞 ∈ N, write ⟨𝑞⟩ :=
∑︀𝑞

𝑖=1 𝑥𝑖𝑦𝑖𝑧𝑖 for the independent tensor of size 𝑞, which
has 𝑞 terms which do not share any variables with each other. For instance, in
Example 4.3, 𝐷 = ⟨2⟩. Since ⟨1⟩ can be restricted to any rank one tensor, and
restrictions act independently on each term of ⟨𝑞⟩, we see that:

Proposition 4.2. For any 𝑞 ∈ N and tensor 𝑇 , there is a restriction 𝑇 ≤ ⟨𝑞⟩ if and
only if 𝑅(𝑇 ) ≤ 𝑞.

We can see that 𝐴 ≤ 𝐵 ≤ 𝐶 implies that 𝐴 ≤ 𝐶 by simply composing the
corresponding linear maps; it follows from Proposition 4.2 that 𝐴 ≤ 𝐵 implies 𝑅(𝐴) ≤
𝑅(𝐵).

Proposition 4.2 illustrates how difficult it can be to determine whether there is a
restriction between two given tensors, since tensor rank is hard to compute even for
small explicit tensors. For instance, although 𝑅(⟨2, 2, 2⟩) = 7 is known, determining
the value of 𝑅(⟨3, 3, 3⟩) is open. The best known upper bound is 𝑅(⟨3, 3, 3⟩) ≤ 23,
and so we do not know whether there is a restriction ⟨3, 3, 3⟩ ≤ ⟨22⟩. For more on the
computational difficulty of determining whether there is a restriction between given
tensors, see e.g. [GQ19].

Before continuing, we note that the independent tensor ⟨𝑞⟩ will appear again
numerous times throughout this dissertation. For one example, it can be used to
capture the disjoint sum of a tensor with itself:

Definition 4.1. For any tensors 𝑇1 over 𝑋1, 𝑌1, 𝑍1 and 𝑇2 over 𝑋2, 𝑌2, 𝑍2, their
direct sum 𝑇1 ⊕ 𝑇2 is a tensor over 𝑋1 ⊔ 𝑋2, 𝑌1 ⊔ 𝑌2, 𝑍1 ⊔ 𝑍2 given by the sum (as
polynomials) of 𝑇1 and 𝑇2. For 𝑞 ∈ N and tensor 𝑇 , we write 𝑞 ⊙ 𝑇 for the disjoint
sum of 𝑞 copies of 𝑇 . Note that 𝑞 ⊙ 𝑇 = ⟨𝑞⟩ ⊗ 𝑇 .

Degeneration The most powerful known asymptotic rank-preserving reduction be-
tween tensors is a degeneration3. It combines the power of the formal variable 𝜆 from
monomial degenerations with the linear transformations from restrictions.

Let 𝐴 be a tensor over 𝑋 ′, 𝑌 ′, 𝑍 ′, and 𝐵 be a tensor over 𝑋, 𝑌, 𝑍. We say 𝐴 is a
degeneration of 𝐵, denoted 𝐴 E 𝐵, if there are linear maps 𝑀𝑋 : F𝑋 → F[𝜆]𝑋

′ , 𝑀𝑌 :
F𝑌 → F[𝜆]𝑌

′ , 𝑀𝑍 : F𝑍 → F[𝜆]𝑍
′ , whose ranges are linear combinations of the variables

of 𝐴 whose coefficients are polynomials in 𝜆 such that: when 𝐵′ = 𝐵 ∘ (𝑀𝑋 ,𝑀𝑌 ,𝑀𝑍)

3Slightly more powerful notions, like degenerations with multiple 𝜆 variables, can be captured
by straightforward modifications to the notion of degeneration which preserve all the results about
degenerations which we prove below.
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is viewed as a polynomial in 𝜆, and ℎ is the smallest integer such that the coefficient
of 𝜆ℎ in 𝐵′ is nonzero, then the coefficient of 𝜆ℎ in 𝐵′ is 𝐴.

Example 4.4. For the tensors

𝐷 = 𝑥+𝑦+𝑧+ + 𝑥−𝑦−𝑧−,

𝐶 = 𝑥0𝑦0𝑧0 + 𝑥1𝑦1𝑧0 + 𝑥1𝑦0𝑧1,

𝐵 = 𝑥0𝑦0𝑧0 + 𝑥1𝑦1𝑧0 + 𝑥1𝑦0𝑧1 + 𝑥0𝑦1𝑧1,

we showed in Example 4.2 that 𝐶 E𝑚𝑑 𝐵, and we showed in Example 4.3 that 𝐵 ≤
𝐷. Composing the two transformations shows that 𝐶 E 𝐷. Although composing a
monomial degeneration and a restriction like this is one way to give a degeneration,
there are more degenerations not captured by this approach as well.

The result of Bini [Bin80] implies that if 𝐴 E 𝐵 then �̃�(𝐴) ≤ �̃�(𝐵), just as it did
for monomial degenerations. In particular, if 𝐴 E ⟨𝑞⟩, then �̃�(𝐴) ≤ 𝑞.

4.5 The Universal Method

We now have all the ingredients in place to define the Universal Method for designing
MM algorithms, which subsumes and greatly generalizes the known approaches for
designing MM algorithms. The Universal Method applied to a tensor 𝑇 consists
of two components:

(1) a bound �̃�(𝑇 ) ≤ 𝑟 on the asymptotic rank of 𝑇 , and

(2) a degeneration ⟨𝑞, 𝑞, 𝑞⟩ E 𝑇⊗𝑛, which reduces MM to a tensor power of 𝑇 .

Combined, the two components imply that �̃�(⟨𝑞, 𝑞, 𝑞⟩) ≤ 𝑟𝑛, and hence that 𝜔 ≤
𝑛 log𝑞 𝑟. We write 𝜔𝑢(𝑇 ) for the lim inf over all bounds on 𝜔 which can be proved
in this way, including picking 𝑟 to be the true asymptotic rank of 𝑇 , and for each 𝑛
picking the largest 𝑞 such that the degeneration required for step (2) exists.

The Asymptotic Sum Inequality? Readers familiar with Schönhage’s Asymp-
totic Sum Inequality may wonder why step (2) in the Universal Method requires a
degeneration to a single MM tensor rather than a disjoint sum of many. Indeed,
Schönhage shows that degenerations to disjoint sums of MM tensors are sufficient to
bound 𝜔:

Theorem 4.1 (Asymptotic Sum Inequality [Sch81]). If �̃� (𝑓 ⊙ ⟨𝑞, 𝑞, 𝑞⟩) ≤ 𝑟, then
𝜔 ≤ log(𝑟/𝑓)/ log(𝑞).4

4Schönhage’s Asymptotic Sum Inequality allows for a disjoint sum of MM tensors of many dif-
ferent shapes (values of 𝑞) as well, but the first step of its proof shows that, by taking large tensor
powers, one can assume without loss of generality that all the MM tensors have the same shape.
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It may seem like one could prove a better bound on 𝜔 by degenerating to a disjoint
sum of MM tensors rather than a single MM tensor. However, this technique is
actually captured by the Universal Method as well; one can always find degenerations
from powers of 𝑇 to a single MM tensor which achieve an equally good bound on 𝜔:

Proposition 4.3. If 𝑇 is a tensor with �̃�(𝑇 ) = 𝑟 and 𝑓⊙⟨𝑞, 𝑞, 𝑞⟩ E 𝑇 , then 𝜔𝑢(𝑇 ) ≤
log(𝑟/𝑓)/ log(𝑞).

Proof. By definition of 𝜔, for every 𝜀 > 0, there is a 𝑚 ∈ N such that ⟨𝑎, 𝑎, 𝑎⟩ E ⟨𝑓𝑚⟩
and 𝑎 ≥ 𝑓𝑚/(𝜔+𝜀) ≥ 𝑓𝑚/(𝜔𝑢(𝑇 )+𝜀) (where the second inequality holds because 𝜔𝑢(𝑇 ) ≥
𝜔). In particular, we have that

𝑇⊗𝑚 D ⟨𝑓𝑚⟩ ⊗ ⟨𝑞𝑚, 𝑞𝑚, 𝑞𝑚⟩ D ⟨𝑎𝑞𝑚, 𝑎𝑞𝑚, 𝑎𝑞𝑚⟩,

which yields the bound

𝜔𝑢(𝑇 ) ≤ log(𝑟𝑚)

log(𝑎𝑞𝑚)
≤ log(𝑟𝑚)

log(𝑓𝑚/(𝜔𝑢(𝑇 )+𝜀)𝑞𝑚)
=

log(𝑟𝜔𝑢(𝑇 )+𝜀)

log(𝑓𝑞𝜔𝑢(𝑇 )+𝜀)
.

Rearranging yields
𝑓 · 𝑞𝜔𝑢(𝑇 )+𝜀 ≤ 𝑟1+𝜀/𝜔𝑢(𝑇 ) ≤ 𝑟1+𝜀,

and hence

𝜔𝑢(𝑇 ) ≤ log(𝑟1+𝜀/𝑓)

log(𝑞)
− 𝜀 =

log(𝑟/𝑓)

log(𝑞)
+ 𝜀 ·

(︂
log(𝑟)

log(𝑞)
− 1

)︂
.

Since this holds for all sufficiently small 𝜀 > 0, it implies that 𝜔𝑢(𝑇 ) ≤ log(𝑟/𝑓)/ log(𝑞)
as desired.

Rectangular MM Tensors? Step (2) in the Universal Method requires a degen-
eration to a square MM tensor, but degenerations to rectangular MM tensors also
give bounds on 𝜔. Indeed, if �̃�(⟨𝑎, 𝑏, 𝑐⟩) ≤ 𝑟, then by the symmetry of ⟨𝑎, 𝑏, 𝑐⟩
we also get that �̃�(⟨𝑏, 𝑐, 𝑎⟩) ≤ 𝑟 and �̃�(⟨𝑐, 𝑎, 𝑏⟩) ≤ 𝑟, which combined mean that
�̃�(⟨𝑎𝑏𝑐, 𝑎𝑏𝑐, 𝑎𝑏𝑐⟩) ≤ 𝑟3, and hence 𝜔 ≤ 3 log(𝑟)/ log(𝑎𝑏𝑐).

If tensor 𝑇 is ‘variable-symmetric’, then a similar argument shows that, in the
Universal Method applied to 𝑇 , allowing for degenerations to rectangular MM tensors
cannot help.

Definition 4.2. If 𝑇 is a tensor over 𝑋, 𝑌, 𝑍, then the rotation of 𝑇 , denoted 𝑟𝑜𝑡(𝑇 ),
is the tensor over 𝑌, 𝑍,𝑋 such that for any (𝑥𝑖, 𝑦𝑗, 𝑧𝑘) ∈ 𝑋 × 𝑌 × 𝑍, the coefficient
of 𝑥𝑖𝑦𝑗𝑧𝑘 in 𝑇 is equal to the coefficient of 𝑦𝑗𝑧𝑘𝑥𝑖 in 𝑟𝑜𝑡(𝑇 ). Tensor 𝑇 is variable-
symmetric if 𝑇 = 𝑟𝑜𝑡(𝑇 ).

The symmetrized version of 𝑇 , denoted 𝑠𝑦𝑚(𝑇 ), is given by 𝑠𝑦𝑚(𝑇 ) = 𝑇 ⊗
𝑟𝑜𝑡(𝑇 ) ⊗ 𝑟𝑜𝑡(𝑟𝑜𝑡(𝑇 )). For any tensor 𝑇 , the tensor 𝑠𝑦𝑚(𝑇 ) is always variable-
symmetric. Moreover, if 𝑇 was variable-symmetric, then 𝑠𝑦𝑚(𝑇 ) = 𝑇⊗3.

For any tensor 𝑇 , if �̃�(𝑇 ) = 𝑟 and 𝑇⊗𝑛 D ⟨𝑎, 𝑏, 𝑐⟩ to yield 𝜔 ≤
3𝑛 log(𝑟)/ log(𝑎𝑏𝑐), then it follows that 𝑠𝑦𝑚(𝑇 )⊗𝑛 D ⟨𝑎𝑏𝑐, 𝑎𝑏𝑐, 𝑎𝑏𝑐⟩, meaning
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𝜔𝑢(𝑠𝑦𝑚(𝑇 )) ≤ 3𝑛 log(𝑟)/ log(𝑎𝑏𝑐). In other words, any bound on 𝜔 which we could
achieve if we allowed for rectangular MM tensors in step (2) of the Universal Method
applied to 𝑇 , can also be achieved by applying the Universal Method as written
to 𝑠𝑦𝑚(𝑇 ). Notably, almost every tensor we will consider in the remainder of this
chapter is variable-symmetric, for which 𝑠𝑦𝑚(𝑇 ) = 𝑇 .

In the previous paragraph we used the fact that �̃�(𝑠𝑦𝑚(𝑇 )) ≤ �̃�(𝑇 )3 = 𝑟3,
but if 𝑇 is such that �̃�(𝑠𝑦𝑚(𝑇 )) < �̃�(𝑇 )3 then we get an even better bound of
𝜔𝑢(𝑠𝑦𝑚(𝑇 )) ≤ 𝑛 log(�̃�(𝑠𝑦𝑚(𝑇 )))/ log(𝑎𝑏𝑐) < 3𝑛 log(𝑟)/ log(𝑎𝑏𝑐). To prove the best
bounds on 𝜔 when using a tensor 𝑇 which is not variable-symmetric, one should
always apply the Universal Method to 𝑠𝑦𝑚(𝑇 ) rather than 𝑇 .

Example 4.5. For any 𝑞 ∈ N, consider the tensor 𝑇 = ⟨𝑞, 1, 1⟩. A ‘flattening’
argument5 shows that �̃�(𝑇 ) = 𝑞. However, 𝑠𝑦𝑚(𝑇 ) = ⟨𝑞, 𝑞, 𝑞⟩, and so �̃�(𝑠𝑦𝑚(𝑇 )) =
𝑞𝜔 < 𝑞3 = �̃�(𝑇 )3 when 𝑞 > 1.

4.5.1 The Solar and Galactic Methods

The Universal Method is very general, and it is typically unclear how to apply it
optimally to a given tensor 𝑇 . In fact, all known approaches to designing MM al-
gorithms use a substantially restricted method, which uses zeroing outs instead of
degenerations, which we call the Solar Method. The Solar Method applied to a
tensor 𝑇 consists of two components:

(1) a bound �̃�(𝑇 ) ≤ 𝑟 on the asymptotic rank of 𝑇 , and

(2) a zeroing out 𝑓 ⊙ ⟨𝑞, 𝑞, 𝑞⟩ ≤𝑧𝑜 𝑇
⊗𝑛.

The resulting bound on 𝜔 is that 𝜔 ≤ log(𝑟𝑛/𝑓)/ log(𝑞), and the lim inf over all
bounds on 𝜔 which can be achieved in this way is denoted 𝜔𝑠(𝑇 ). Here, we need to
allow for a zeroing out into a disjoint sum of multiple MM tensors in step (2), unlike
in the Universal Method, since Proposition 4.3 critically makes use of degenerations,
and not just zeroing outs, in the first step of the proof.

One can also define an intermediate method, the Galactic Method, which is
identical to the Solar Method except that the zeroing out ≤𝑧𝑜 in step (2) is replaced
by the more powerful monomial degeneration E𝑚𝑑, and the best resulting bound on
𝜔 is denoted 𝜔𝑔(𝑇 ). One could also consider an incomparable intermediate method
which makes use of restrictions instead of monomial degenerations, but since such
a method has not been studied much, and is captured by the Universal Method, it
doesn’t yet have a name.

Because each of degeneration, monomial degeneration, and zeroing out (strictly)
subsumes the previous, we get that for all tensors 𝑇 ,

𝜔 ≤ 𝜔𝑢(𝑇 ) ≤ 𝜔𝑔(𝑇 ) ≤ 𝜔𝑠(𝑇 ).

5When 𝑇 is viewed as a matrix by removing the 𝑧-variable (i.e. setting 𝑧1 ← 1), then 𝑇⊗𝑛

becomes the 𝑞𝑛× 𝑞𝑛 identity matrix, which has rank 𝑞𝑛. If it were the case that 𝑅(𝑇⊗𝑛) < 𝑞𝑛, then
similarly removing 𝑧1 from the rank expression would give an upper bound of 𝑅(𝑇⊗𝑛) on the rank
of the 𝑞𝑛 × 𝑞𝑛 identity matrix as well.
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To be clear, all three of these methods are very general, and we don’t know the
values of 𝜔𝑠(𝑇 ), 𝜔𝑔(𝑇 ), or 𝜔𝑢(𝑇 ) for almost any nontrivial tensors 𝑇 . In fact, all
the known approaches to bounding 𝜔 proceed by giving upper bounds on 𝜔𝑠(𝑇 ) for
some carefully chosen tensors 𝑇 ; the most successful has been the Coppersmith-
Winograd family of tensors 𝑇 = 𝐶𝑊𝑞, which has yielded all the best known bounds
on 𝜔 since the 80’s [CW90, DS13, Wil12, LG14]. In particular, it is not generally
believed that our current upper bounds on 𝜔𝑠(𝐶𝑊𝑞) are optimal, since the techniques
from [DS13, Wil12, LG14] seem able to further improve on the current bounds (by a
small amount) with more effort.

Finally, we remark that the tensor 𝑇 which these methods apply to is very cru-
cial. The three different methods will trivially give the same bound, 𝜔𝑠(𝑇 ) = 𝜔𝑔(𝑇 ) =
𝜔𝑢(𝑇 ) = 𝜔, when applied to 𝑇 = ⟨2, 2, 2⟩ itself, but this is not particularly interesting:
the point of these different methods is that the asymptotic rank of matrix multipli-
cation tensors is not well-understood, but the methods allow us to prove bounds on
𝜔 by studying other tensors.

4.6 The Known Approaches to Matrix Multiplica-
tion

We conclude this chapter by giving an overview of the two known approaches to de-
signing MM algorithms: the Laser Method and the Group-theoretic Method. Each of
these methods applies to particular tensors 𝑇 to yield bounds in 𝜔𝑠(𝑇 ); in particular,
we will see that the Solar Method is a generalization of both of these methods. We
only give high-level overviews here, mostly just for context, and we recommend the
original papers (cited below) for more details.

4.6.1 The Laser Method

Strassen [Str86] called his approach for reducing MM tensors to other tensors the
Laser Method. In this method applied to a tensor 𝑇 over 𝑋, 𝑌, 𝑍, we start by parti-
tioning the variable sets: 𝑋 = 𝑋1 ∪ . . .∪𝑋𝑘𝑋 , 𝑌 = 𝑌1 ∪ . . .∪ 𝑌𝑘𝑌 , 𝑍 = 𝑍1 ∪ . . . , 𝑍𝑘𝑍 .
For 𝑖 ∈ [𝑘𝑋 ], 𝑗 ∈ [𝑘𝑌 ], 𝑘 ∈ [𝑘𝑍 ], let 𝑇𝑖𝑗𝑘 be the sub-tensor of 𝑇 obtained by zeroing out
all variables 𝑥 /∈ 𝑋𝑖, 𝑦 /∈ 𝑌𝑗, and 𝑧 /∈ 𝑍𝑘; we call 𝑇𝑖𝑗𝑘 a block of 𝑇 . We thus obtain a
partitioning

𝑇 =
∑︁

𝑖∈[𝑘𝑋 ],𝑗∈[𝑘𝑌 ],𝑘∈[𝑘𝑍 ]

𝑇𝑖𝑗𝑘.

Strassen originally considered tensors where the constituent tensors 𝑇𝑖𝑗𝑘 are each MM
tensors; we focus here on this setting, although later work showed how to remove this
requirement.
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The next step is to consider a large tensor power 𝑇⊗𝑁 of 𝑇 . We can write

𝑇⊗𝑁 =
∑︁

𝐼∈[𝑘𝑋 ]𝑁 ,𝐽∈[𝑘𝑌 ]𝑁 ,𝐾∈[𝑘𝑍 ]𝑁

𝑁⨂︁
ℓ=1

𝑇𝐼ℓ𝐽ℓ𝐾ℓ
. (4.4)

Each of the terms on the right-hand side of (4.4) is a MM tensor, and the goal is
to ultimately apply Schönhage’s Asymptotic Sum Inequality (Theorem 4.1 above) to
yield a bound on 𝜔. However, sum the right-hand side of (4.4) is not a disjoint sum,
or in other words, the different MM tensors share variables with each other, so we
cannot apply the Asymptotic Sum Inequality directly.

In the Laser Method, we seek to zero out some variables to fix this problem. We
aim to choose some ℐ ⊆ [𝑘𝑋 ]𝑁 , and then for each 𝐼 ∈ ℐ, to zero out all the variables
in
∏︀

ℓ 𝐼ℓ (and similarly for 𝑦 and 𝑧 variables). One must find such a zeroing out which
leaves exactly a direct sum of matrix multiplication tensors. Finally, applying the
Asymptotic Sum Inequality yields a bound on 𝜔.

We now turn to the most successful implementation of the Laser Method: the
Coppersmith-Winograd approach. The Coppersmith-Winograd (CW) family of
tensors (𝐶𝑊𝑞)𝑞∈N is defined as:

𝐶𝑊𝑞 = 𝑥0𝑦0𝑧𝑞+1 + 𝑥𝑞+1𝑦0𝑧0 + 𝑥0𝑦𝑞+1𝑧0 +

𝑞∑︁
𝑖=1

(𝑥𝑖𝑦0𝑧𝑖 + 𝑥0𝑦𝑖𝑧𝑖 + 𝑥𝑖𝑦𝑖𝑧0).

𝐶𝑊𝑞 is a tensor over 𝑞 + 2 𝑥-variables, 𝑞 + 2 𝑦-variables, and 𝑞 + 2 𝑧-variables, and
it is known that �̃�(𝐶𝑊𝑞) = 𝑞 + 2 (The upper bound �̃�(𝐶𝑊𝑞) ≤ 𝑞 + 2 was a key
contribution of [CW90], and the lower bound follows from a ‘flattening’ argument).

Coppersmith and Winograd [CW90] followed the laser method. The terms of
𝐶𝑊𝑞 have a natural partitioning 𝐶𝑊𝑞 = 𝑇002 + 𝑇020 + 𝑇200 + 𝑇011 + 𝑇101 + 𝑇110,
where 𝑇002 = 𝑥0𝑦0𝑧𝑞+1, 𝑇200 = 𝑥𝑞+1𝑦0𝑧0, 𝑇020 = 𝑥0𝑦𝑞+1𝑧0, 𝑇101 =

∑︀𝑞
𝑖=1 𝑥𝑖𝑦0𝑧𝑖, 𝑇011 =∑︀𝑞

𝑖=1 𝑥0𝑦𝑖𝑧𝑖, 𝑇110 =
∑︀𝑞

𝑖=1 𝑥𝑖𝑦𝑖𝑧0. This partitioning has three key properties. First,
each of these parts is a MM tensor. Second, this partitioning arises from a block-
partitioning of the variables where we partition 𝑋 = 𝑋0 ∪𝑋1 ∪𝑋2 where 𝑋0 = {𝑥0},
𝑋1 = {𝑥1, 𝑥2, . . . , 𝑥𝑞}, and 𝑋2 = {𝑥𝑞+1}, and similarly for 𝑌 and 𝑍. Third, each
sub-tensor 𝑇𝑖𝑗𝑘 is non-zero if and only if 𝑖+ 𝑗 + 𝑘 = 2.

The Coppersmith-Winograd implementation of the laser method uses these prop-
erties together with sets excluding 3-term arithmetic progressions (in conjunction with
the third property above) to decide which blocks of variables to zero out in 𝐶𝑊⊗𝑁

𝑞 .
The sets excluding 3-term arithmetic progressions can be used to guarantee that the
result is a direct sum of many large matrix multiplication tensors, thus obtaining a
bound on 𝜔. Coppersmith and Winograd get a different bound on 𝜔 for each 𝑞, and
optimize it by picking 𝑞 = 6. They then achieve a slightly better bound on 𝜔 by
analyzing the square 𝐶𝑊⊗2

𝑞 in a similar way. In Theorem 5.5 in the next Chapter,
we present all the details of Coppersmith and Winograd’s application of the Laser
Method.

The later improvements on the Coppersmith-Winograd bounds by

54



Stothers [DS13], Vassilevska Williams [Wil12] and Le Gall [LG14] instead used
the laser method with the CW tools starting from 𝐶𝑊⊗4

𝑞 , 𝐶𝑊⊗8
𝑞 and {𝐶𝑊⊗16

𝑞 and
𝐶𝑊⊗32

𝑞 }, respectively. Each new analysis used different, but related, blockings and
partitionings, and each ultimately optimizes the resulting bound on 𝜔 by picking
𝑞 = 5, and hence using 𝐶𝑊5 as the starting tensor. In other words, each ultimately
gives an upper bound on 𝜔𝑠(𝐶𝑊5). The constituent tensors of powers of 𝐶𝑊𝑞

are sometimes not MM tensors. To deal with this, one (recursively) performs a
Coppersmith-Winograd analysis on the constituent tensors, showing that they,
themselves, can zero out into large MM tensors at high enough tensor powers. As the
power of 𝐶𝑊𝑞 which is considered grows, the number of recursive analyses needed
becomes very large.

The Coppersmith-Winograd approach doesn’t exploit very much about the con-
stituent tensors 𝑇𝑖𝑗𝑘. In particular, the analysis remains unchanged if one replaces
each 𝑇𝑖𝑗𝑘 with another tensor 𝑇 ′

𝑖𝑗𝑘 over the same sets of variables 𝑋𝑖, 𝑌𝑗, 𝑍𝑘, as long as
𝑇 ′
𝐼𝐽𝐾 has the same “value” (i.e. can degenerate to equally large MM tensors in high

tensor powers), and the modified tensor 𝑇 ′ has the same asymptotic rank as 𝑇 . In this
case, the bound on 𝜔 the approach would give is exactly the same! For instance, when
𝑇𝑖𝑗𝑘 is a matrix multiplication tensor ⟨𝑎, 𝑏, 𝑐⟩, one can replace it with another matrix
multiplication tensor ⟨𝑎′, 𝑏′, 𝑐′⟩ as long as the new tensor uses the same variables and
𝑎′𝑏′𝑐′ = 𝑎𝑏𝑐, and as long as the the asymptotic rank of the overall tensor has not
increased. For instance, if we take 𝑇110 =

∑︀𝑞
𝑖=1

∑︀𝑞
𝑗=1 𝑥𝑖𝑦𝑗𝑧0 in 𝐶𝑊𝑞 and replace it

with
∑︀𝑞

𝑖=1

∑︀𝑞
𝑗=1 𝑥𝑖𝑦𝑞+1−𝑖𝑧0, then we get the rotated 𝐶𝑊𝑞 tensor studied in [AW18a].

This tensor still has asymptotic rank 𝑞 + 2, and thus gives the same upper bound on
𝜔 using the CW approach.

We can thus define a family of generalized CW tensors:

Definition 4.3. The family 𝐶𝑊 𝑞 of tensors includes, for every permutation 𝜎 ∈ 𝑆𝑞,
the tensor

𝐶𝑊 𝜎
𝑞 = (𝑥0𝑦0𝑧𝑞+1 + 𝑥0𝑦𝑞+1𝑧0 + 𝑥𝑞+1𝑦0𝑧0) +

𝑞∑︁
𝑖=1

(𝑥𝑖𝑦𝜎(𝑖)𝑧0 + 𝑥𝑖𝑦0𝑧𝑖 + 𝑥0𝑦𝑖𝑧𝑖).

The family above contains all tensors obtained from 𝐶𝑊𝑞 by replacing∑︀𝑞
𝑖=1(𝑥𝑖𝑦𝑖𝑧0 + 𝑥𝑖𝑦0𝑧𝑖 + 𝑥0𝑦𝑖𝑧𝑖) with

∑︀𝑞
𝑖=1(𝑥𝜏(𝑖)𝑦𝜎(𝑖)𝑧0 + 𝑥𝛼(𝑖)𝑦0𝑧𝛽(𝑖) + 𝑥0𝑦𝛾(𝑖)𝑧𝛿(𝑖)) for

any choice of 𝛼, 𝛽, 𝛾, 𝛿, 𝜎, 𝜏 ∈ 𝑆𝑞, by a simple renaming of variables.
The constituent tensor 𝑇110 of 𝐶𝑊 𝜎

𝑞 is
∑︀𝑞

𝑖=1 𝑥𝑖𝑦𝜎(𝑖)𝑧0, which is still a ⟨1, 𝑞, 1⟩
tensor. Thus, for any such tensor from the family 𝐶𝑊 𝑞, if its asymptotic rank is
𝑞+ 2, then the Coppersmith-Winograd approach would give exactly the same bound
on 𝜔, as with 𝐶𝑊𝑞. Unfortunately, the asymptotic rank lower bounding technique
applies equally well to any tensor in 𝐶𝑊 𝑞, showing that they all have asymptotic
rank at least 𝑞 + 2, so our upper bounds on 𝜔 cannot be improved just in this way.

4.6.2 The Group-theoretic Method

Cohn and Umans [CU03] pioneered a new Group-theoretic Method for matrix mul-
tiplication, which works with a finite group 𝐺 rather than directly with a tensor.
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Roughly, they define properties of a group such that, if 𝐺 has these properties, then
it is possible to zero out an underlying tensor corresponding to 𝐺 into a MM tensor.

Definition 4.4. For any finite group 𝐺, the group tensor of 𝐺, denoted 𝑇𝐺, is a
tensor over 𝑋𝐺, 𝑌𝐺, 𝑍𝐺 where 𝑋𝐺 := {𝑥𝑔 | 𝑔 ∈ 𝐺}, 𝑌𝐺 := {𝑦𝑔 | 𝑔 ∈ 𝐺}, and
𝑍𝐺 := {𝑧𝑔 | 𝑔 ∈ 𝐺}, given by

𝑇𝐺 :=
∑︁
𝑔,ℎ∈𝐺

𝑥𝑔𝑦ℎ𝑧𝑔ℎ.

(The group tensor of 𝐺 is often called the structural tensor of the group algebra
C[𝐺], written as 𝑇C[𝐺], in the literature. We write 𝑇𝐺 here for ease of notation.)

The Group-theoretic Method first bounds the asymptotic rank of 𝑇𝐺 using rep-
resentation theory, as follows. Let 𝑑𝑢 be the dimension of the 𝑢th irreducible repre-
sentation of 𝐺 (i.e. the 𝑑𝑢s are the character degrees of 𝐺). Then 𝑇𝐺 can be seen to
restrict from

⨁︀ℓ
𝑢=1⟨𝑑𝑢, 𝑑𝑢, 𝑑𝑢⟩. In particular, we get that6

�̃�(𝑇𝐺) = �̃�

(︃
ℓ⨁︁

𝑢=1

⟨𝑑𝑢, 𝑑𝑢, 𝑑𝑢⟩

)︃
=

ℓ∑︁
𝑢=1

𝑑𝜔𝑢 .

If we could find any degeneration (e.g. a zeroing out) of 𝑇𝐺 into ⟨𝑞, 𝑞, 𝑞⟩, it would
imply that

𝑞𝜔 ≤
ℓ∑︁

𝑢=1

𝑑𝜔𝑢 ,

which gives an upper bound on 𝜔.
Cohn and Umans defined two properties of subsets of 𝐺 which yield a zeroing out

of 𝑇𝐺 into a MM tensor, called the ‘triple product property’, and the ‘simultaneous
triple product property’ (which zeroes out into a disjoint sum of MM tensors). Hence,
bounds on 𝜔 can follow from showing that a group 𝐺 has large subsets with these
properties. Typically one works with a family of groups (as in 𝐴𝑛 or 𝑆𝑛 for all 𝑛 ∈ N),
and then one can pick the 𝑛 that optimizes the bound on 𝜔, or even take 𝑛 → ‘∞,
e.g. when the groups correspond to tensor powers of some tensor. We refer the reader
to [Lan17, Section 3.5] for more exposition on the Group-theoretic Method and its
interpretation as finding a zeroing out of group tensors.

6It is more straightforward to see that this holds with inequalities (‘≤’ instead of ‘=’) but in fact
equality holds because the corresponding restriction of 𝑇𝐺 is invertible.
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Chapter 5

Limits on the Universal Method

5.1 Asymptotic Slice Rank
In this chapter, we will prove new limitation results against the Universal Method.
Our limitations will critically make use of variant on the rank of a tensor, called slice
rank. We begin in this section by introducing slice rank and its key properties.

We say a tensor 𝑇 over 𝑋, 𝑌, 𝑍 has x-rank one if it is of the form

𝑇 =

(︃∑︁
𝑥∈𝑋

𝛼𝑥 · 𝑥

)︃
⊗

(︃∑︁
𝑦∈𝑌

∑︁
𝑧∈𝑍

𝛽𝑦,𝑧 · 𝑦 ⊗ 𝑧

)︃
=

∑︁
𝑥∈𝑋,𝑦∈𝑌,𝑧∈𝑍

𝛼𝑥𝛽𝑦,𝑧 · 𝑥𝑦𝑧

for some choices of the 𝛼𝑥 and 𝛽𝑦,𝑧 coefficients over F. More generally, the x-rank of
𝑇 , denoted 𝑆𝑥(𝑇 ), is the minimum number of tensors of x-rank one whose sum is 𝑇 .
We can similarly define the y-rank, 𝑆𝑦, and the z-rank, 𝑆𝑧. Then, the slice rank of
𝑇 , denoted 𝑆(𝑇 ), is the minimum 𝑘 such that there are tensors 𝑇𝑋 , 𝑇𝑌 and 𝑇𝑍 with
𝑇 = 𝑇𝑋 + 𝑇𝑌 + 𝑇𝑍 and 𝑆𝑥(𝑇𝑋) + 𝑆𝑦(𝑇𝑌 ) + 𝑆𝑧(𝑇𝑍) = 𝑘.

Unlike tensor rank, the slice-rank is not submultiplicative in general, i.e. there
are tensors 𝐴 and 𝐵 such that 𝑆(𝐴⊗𝐵) > 𝑆(𝐴) · 𝑆(𝐵). For instance, it is not hard
to see that 𝑆(𝐶𝑊5) = 3, but since it is known [Wil12, LG14] that 𝜔𝑠(𝐶𝑊5) ≤ 2.373,
it follows (e.g. from Theorem 5.1 below) that 𝑆(𝐶𝑊⊗𝑛

𝑞 ) ≥ 7𝑛·2/2.373−𝑜(𝑛) ≥ 5.15𝑛−𝑜(𝑛).
We are thus interested in the asymptotic slice rank, 𝑆(𝑇 ), of tensors 𝑇 , which is
defined similarly to the asymptotic rank as

𝑆(𝑇 ) := lim sup
𝑛∈N

[𝑆(𝑇⊗𝑛)]1/𝑛.

We note a few simple properties of slice rank which will be helpful in our proofs:

Lemma 5.1. For tensors 𝐴 and 𝐵:

(1) 𝑆(𝐴) ≤ 𝑆𝑥(𝐴) ≤ 𝑅(𝐴),

(2) 𝑆𝑥(𝐴⊗𝐵) ≤ 𝑆𝑥(𝐴) · 𝑆𝑥(𝐵),

(3) 𝑆(𝐴+𝐵) ≤ 𝑆(𝐴) + 𝑆(𝐵), and 𝑆𝑥(𝐴+𝐵) ≤ 𝑆𝑥(𝐴) + 𝑆𝑥(𝐵),
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(4) 𝑆(𝐴⊗𝐵) ≤ 𝑆(𝐴) ·max{𝑆𝑥(𝐵), 𝑆𝑦(𝐵), 𝑆𝑧(𝐵)}, and

(5) If 𝐴 is a tensor over 𝑋, 𝑌, 𝑍, then 𝑆𝑥(𝑇 ) ≤ |𝑋| and hence 𝑆(𝑇 ) ≤
min{|𝑋|, |𝑌 |, |𝑍|}.

Proof. (1) and (2) are straightforward. (3) follows since the sum of the slice rank
(resp. x-rank) expressions for 𝐴 and for 𝐵 gives a slice rank (resp. x-rank) expression
for 𝐴 + 𝐵. To prove (4), let 𝑚 = max{𝑆𝑥(𝐵), 𝑆𝑦(𝐵), 𝑆𝑧(𝐵)}, and note that if 𝐴 =
𝐴𝑋 + 𝐴𝑌 + 𝐴𝑍 such that 𝑆𝑥(𝐴𝑋) + 𝑆𝑦(𝐴𝑌 ) + 𝑆𝑧(𝐴𝑍) = 𝑆(𝐴), then

𝐴⊗𝐵 = 𝐴𝑋 ⊗𝐵 + 𝐴𝑌 ⊗𝐵 + 𝐴𝑍 ⊗𝐵,

and so

𝑆(𝐴⊗𝐵) ≤ 𝑆(𝐴𝑋 ⊗𝐵) + 𝑆(𝐴𝑌 ⊗𝐵) + 𝑆(𝐴𝑍 ⊗𝐵)

≤ 𝑆𝑥(𝐴𝑋 ⊗𝐵) + 𝑆𝑦(𝐴𝑌 ⊗𝐵) + 𝑆𝑧(𝐴𝑍 ⊗𝐵)

≤ 𝑆𝑥(𝐴𝑋)𝑆𝑥(𝐵) + 𝑆𝑦(𝐴𝑌 )𝑆𝑦(𝐵) + 𝑆𝑧(𝐴𝑍)𝑆𝑧(𝐵)

≤ 𝑆𝑥(𝐴𝑋)𝑚+ 𝑆𝑦(𝐴𝑌 )𝑚+ 𝑆𝑧(𝐴𝑍)𝑚 = 𝑆(𝐴) ·𝑚.

Finally, (5) follows since, for instance, any tensor with one only x-variable has
x-rank 1.

5.2 Limits on the Universal Method from Asymp-
totic Slice Rank

Asymptotic slice rank is interesting in the context of MM algorithms and the Universal
Method because of the following facts. First, degenerations cannot increase slice rank:

Proposition 5.1 ([TS16, Corollary 2]). If 𝐴 and 𝐵 are tensors such that 𝐵 E 𝐴,
then 𝑆(𝐵) ≤ 𝑆(𝐴), and hence 𝑆(𝐵) ≤ 𝑆(𝐴).

Second, the independent tensor ⟨𝑞⟩ has asymptotic slice rank 𝑞:

Proposition 5.2 ([Tao16, Lemma 1]; see also [BCC+17a, Lemma 4.7]). For any
positive integer 𝑞, we have 𝑆(⟨𝑞⟩) = 𝑆(⟨𝑞⟩) = 𝑞.

Third, MM tensors have (monomial) degenerations to large independent tensors:

Proposition 5.3 ([Str86, Theorem 4]). For any positive integers 𝑎, 𝑏, 𝑐, there is a
𝑞 ≥ 3

4
𝑎𝑏𝑐/max{𝑎, 𝑏, 𝑑} such that ⟨𝑞⟩ E𝑚𝑑 ⟨𝑎, 𝑏, 𝑐⟩.

Proof. Assume first that 𝑎 = 2𝑚 + 1, 𝑏 = 2𝑛 + 1, and 𝑐 = 2𝑝 + 1 are all odd, and
assume without loss of generality that 𝑐 ≥ 𝑎, 𝑏. We write

⟨𝑎, 𝑏, 𝑐⟩ =
𝑚∑︁

𝑖=−𝑚

𝑛∑︁
𝑗=−𝑛

𝑝∑︁
𝑘=−𝑝

𝑥𝑖𝑗𝑦𝑗𝑘𝑧𝑘𝑖.
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We define our monomial degeneration (using the notation of Section 4.4) via the map
𝑚 : 𝑋 ∪ 𝑌 ∪ 𝑍 →𝑀𝑜𝑛 defined as follows:

∙ 𝑚(𝑥𝑖𝑗) = 𝜆𝑖
2+2𝑖𝑗+3𝑝2 ,

∙ 𝑚(𝑦𝑗𝑘) = 𝜆𝑗
2+2𝑗𝑘+3𝑝2 , and

∙ 𝑚(𝑧𝑘𝑖) = 𝜆𝑘
2+2𝑘𝑖+3𝑝2 .

For any term 𝑥𝑖𝑗𝑦𝑗𝑘𝑧𝑘𝑖 ∈ ⟨𝑎, 𝑏, 𝑐⟩, we thus have 𝑚(𝑥𝑖𝑗) ·𝑚(𝑦𝑗𝑘) ·𝑚(𝑧𝑘𝑖) = 𝜆(𝑖+𝑗+𝑘)2+9𝑝2 .
This exponent of 𝜆 is always at least 9𝑝2, and the term 𝑥𝑖𝑗𝑦𝑗𝑘𝑧𝑘𝑖 is included in the
resulting tensor 𝐷 of the monomial degeneration if and only if 𝑖 + 𝑗 + 𝑘 = 0. We
can see that if 𝑖 + 𝑗 + 𝑘 = 0, then any two of 𝑖, 𝑗, 𝑘 determines the third, meaning
any one of the variables 𝑥𝑖𝑗, 𝑦𝑗𝑘, 𝑧𝑘𝑖 determines the other two, and so 𝐷 is indeed an
independent tensor. Finally, there is a triple of (𝑖, 𝑗, 𝑘), |𝑖| ≤ 𝑛, |𝑗| ≤ 𝑚, |𝑘| ≤ 𝑝 with
𝑖+ 𝑗 + 𝑘 = 0 for each pair (𝑖, 𝑗), |𝑖| ≤ 𝑛, |𝑗| ≤ 𝑚 with |𝑖+ 𝑗| ≤ 𝑝. Since 𝑝 ≥ 𝑛,𝑚, we
can see there are at least 3

4
𝑎𝑏 such pairs, as desired. The cases where 𝑎, 𝑏, 𝑐 are not

all odd are similar.

Combined, these three facts show that MM tensors have large asymptotic slice
rank. In fact, it is as large as possible given its number of variables:

Corollary 5.1. For any positive integers 𝑎, 𝑏, 𝑐, we have 𝑆(⟨𝑎, 𝑏, 𝑐⟩) =
𝑎𝑏𝑐/max{𝑎, 𝑏, 𝑐}.

Proof. Assume without loss of generality that 𝑐 ≥ 𝑎, 𝑏. For any positive integer 𝑛, we
have that ⟨𝑎, 𝑏, 𝑐⟩⊗𝑛 = ⟨𝑎𝑛, 𝑏𝑛, 𝑐𝑛⟩ D ⟨0.75 · 𝑎𝑛𝑏𝑛⟩, meaning 𝑆(⟨𝑎, 𝑏, 𝑐⟩⊗𝑛) ≥ 0.75 · 𝑎𝑛𝑏𝑛
and hence 𝑆(⟨𝑎, 𝑏, 𝑐⟩) ≥ (0.75)1/𝑛𝑎𝑏. Since this holds for all 𝑛 ∈ N, we see that
𝑆(⟨𝑎, 𝑏, 𝑐⟩) ≥ 𝑎𝑏. Meanwhile, ⟨𝑎, 𝑏, 𝑐⟩ has 𝑎𝑏 different 𝑥-variables, so it must have
𝑆𝑥(⟨𝑎, 𝑏, 𝑐⟩) ≤ 𝑎𝑏 and more generally, 𝑆(⟨𝑎, 𝑏, 𝑐⟩⊗𝑛) ≤ 𝑆𝑥(⟨𝑎, 𝑏, 𝑐⟩⊗𝑛) ≤ (𝑎𝑏)𝑛, which
means 𝑆(⟨𝑎, 𝑏, 𝑐⟩) ≤ 𝑎𝑏.

To summarize: we know that degenerations cannot increase asymptotic slice rank,
and that matrix multiplication tensors have a high asymptotic slice rank. Hence, if
𝑇 is a tensor such that 𝜔𝑢(𝑇 ) is ‘small’, meaning a power of 𝑇 has a degeneration to
a large matrix multiplication tensor, then 𝑇 itself must have ‘large’ asymptotic slice
rank. To be more precise:

Theorem 5.1. For any tensor 𝑇 ,

𝜔𝑢(𝑇 ) ≥ 2
log(�̃�(𝑇 ))

log(𝑆(𝑇 ))
.

Proof. By definition of 𝜔𝑢(𝑇 ), for every 𝛿 > 0, there are 𝑛, 𝑞 ∈ N with 𝑇⊗𝑛 D ⟨𝑞, 𝑞, 𝑞⟩
and 𝑞 ≥ �̃�(𝑇 )𝑛/(𝜔𝑢(𝑇 )+𝛿). By Proposition 5.1 and Corollary 5.1, it follows that 𝑆(𝑇 ) ≥
𝑞2/𝑛 ≥ �̃�(𝑇 )2/(𝜔𝑢(𝑇 )+𝛿). Rearranging gives that 𝜔𝑢(𝑇 ) + 𝛿 ≥ 2 log(�̃�(𝑇 ))/ log(𝑆(𝑇 )),
and since this holds for all 𝛿 > 0, the desired result follows.
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Corollary 5.2. For any tensor 𝑇 , if 𝜔𝑢(𝑇 ) = 2, then 𝑆(𝑇 ) = �̃�(𝑇 ). Moreover, for
every constant 𝑠 < 1, every tensor 𝑇 with 𝑆(𝑇 ) ≤ �̃�(𝑇 )𝑠 must have 𝜔𝑢(𝑇 ) ≥ 2/𝑠 > 2.

By Theorem 5.1, in order to prove lower bounds on 𝜔𝑢(𝑇 ), it suffices to prove
upper bounds on 𝑆(𝑇 )! In Section 5.3, we will give a number of new tools for doing
so.

5.3 Combinatorial Tools for Asymptotic Slice Rank
Upper Bounds

We now give three general tools for proving upper bounds on 𝑆(𝑇 ) for many tensors
𝑇 . Each of our tools applies to a large class of tensors, but we will see in particular
that all three of them apply to the Coppersmith-Winograd tensor 𝐶𝑊𝑞.

The general idea for the three tools is to find partitions 𝑇 = 𝐴+𝐵 of our tensors,
such that at least one of 𝑆(𝐴) and 𝑆(𝐵) is low, and use this to show that 𝐼(𝑇 ) is
itself low. If 𝑆 were subadditive, i.e. if it were the case that 𝑆(𝑇 ) ≤ 𝑆(𝐴) + 𝑆(𝐵)
when 𝑇 = 𝐴 + 𝐵, then this would be relatively straightforward. Unfortunately, 𝑆 is
not subadditive in general, and even in many natural situations:

Example 5.1. Let 𝑞 be any positive integer, and define the tensors 𝑇1 :=
∑︀𝑞

𝑖=0 𝑥0𝑦𝑖𝑧𝑖,
𝑇2 :=

∑︀𝑞+1
𝑖=1 𝑥𝑖𝑦0𝑧𝑖, and 𝑇3 :=

∑︀𝑞+1
𝑖=1 𝑥𝑖𝑦𝑖𝑧𝑞+1. We can see that 𝑇1 has only one 𝑥-

variable, 𝑇2 has only one 𝑦-variable, and 𝑇3 has only one 𝑧-variable, and so 𝑆(𝑇1) =
𝑆(𝑇2) = 𝑆(𝑇3) = 1. However, 𝑇1 + 𝑇2 + 𝑇3 = 𝐶𝑊𝑞, so the three tensors give a
partition of the Coppersmith-Winograd tensor! Hence, for instance, using the fact
that 𝜔𝑢(𝐶𝑊5) ≤ 2.373, we see that 𝑆(𝐶𝑊5) ≥ �̃�(𝐶𝑊5)

2/𝜔𝑢(𝐶𝑊5) ≥ 72/2.373 ≥ 5.15.

Throughout this section, we will nonetheless describe a number of general situa-
tions where, if 𝑇 can be written as 𝑇 = 𝐴 + 𝐵, then bounds on 𝑆(𝐴) and 𝑆(𝐵) are
sufficient to give bounds on 𝐼(𝑇 ).

5.3.1 Bounds from Variable-Deficient Partitions

We know that tensors 𝑇 without many of one type of variable have small 𝑆(𝑇 ). For
instance, if 𝑇 is over 𝑋, 𝑌, 𝑍, and |𝑋| is ‘small’, then 𝑆(𝑇 ) ≤ |𝑋| is also small. We
begin by showing that if 𝑇 can be written as a sum of a few tensors, each of which
does not have many of one type of variable, then we can still prove an upper bound
on 𝑆(𝑇 ).

If 𝑋, 𝑌, 𝑍 are minimal for 𝑇 , then the measure of 𝑇 , denoted 𝜇(𝑇 ), is given by
𝜇(𝑇 ) := |𝑋| · |𝑌 | · |𝑍|. We state two simple facts about 𝜇:

Fact 5.1. For tensors 𝐴 and 𝐵,

∙ 𝜇(𝐴⊗𝐵) = 𝜇(𝐴) · 𝜇(𝐵), and

∙ if 𝐴 is minimal over 𝑋, 𝑌, 𝑍, then 𝑆(𝐴) ≤ min{|𝑋|, |𝑌 |, |𝑍|} ≤ 𝜇(𝐴)1/3.
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Theorem 5.2. Suppose 𝑇 is a tensor, and 𝑇1, . . . , 𝑇𝑘 are tensors with 𝑇 = 𝑇1 + · · ·+
𝑇𝑘. Then, 𝑆(𝑇 ) ≤

∑︀𝑘
𝑖=1(𝜇(𝑇𝑖))

1/3.

Proof. Note that
𝑇⊗𝑛 =

∑︁
(𝑃1,...,𝑃𝑛)∈{𝑇1,...,𝑇𝑘}𝑛

𝑃1 ⊗ · · · ⊗ 𝑃𝑛.

It follows that

𝑆(𝑇⊗𝑛) ≤
∑︁

(𝑃1,...,𝑃𝑛)∈{𝑇1,...,𝑇𝑘}𝑛
𝑆(𝑃1 ⊗ · · · ⊗ 𝑃𝑛)

≤
∑︁

(𝑃1,...,𝑃𝑛)∈{𝑇1,...,𝑇𝑘}𝑛
𝜇(𝑃1 ⊗ · · · ⊗ 𝑃𝑛)1/3

=
∑︁

(𝑃1,...,𝑃𝑛)∈{𝑇1,...,𝑇𝑘}𝑛
(𝜇(𝑃1) · 𝜇(𝑃2) · · ·𝜇(𝑃𝑛))1/3

= (𝜇(𝑇1)
1/3 + · · ·+ 𝜇(𝑇𝑘)1/3)𝑛,

which implies as desired that 𝑆(𝑇 ) ≤ (𝜇(𝑇1)
1/3 + · · ·+ 𝜇(𝑇𝑘)1/3).

5.3.2 Bounds from Block Partitions

This tool will be the most important in upper bounding the asymptotic slice rank of
many tensors of interest. We show that a partitioning method similar to the Laser
Method applied to a tensor 𝑇 can be used to prove upper bounds on 𝑆(𝑇 ). We begin
by introducing some notation related to partitioning tensors into blocks, similar to
the notation used in Subsection 4.6.1 when describing the Laser Method.

Partition Notation Throughout this subsection, we will be partitioning the terms
of tensors into blocks defined by partitions of the three variable sets. Here we in-
troduce some notation for some properties of such partitions; these definitions all
depend on the particular partition of the variables being used, which will be clear
from context.

Suppose 𝑇 is a tensor minimal over 𝑋, 𝑌, 𝑍, and let 𝑋 = 𝑋1 ∪ · · · ∪ 𝑋𝑘𝑋 , 𝑌 =
𝑌1 ∪ · · · ∪ 𝑌𝑘𝑌 , 𝑍 = 𝑍1 ∪ · · · ∪ 𝑍𝑘𝑍 be partitions of the three variable sets. For
(𝑖, 𝑗, 𝑘) ∈ [𝑘𝑋 ]× [𝑘𝑌 ]× [𝑘𝑍 ], let 𝑇𝑖𝑗𝑘 be 𝑇 restricted to 𝑋𝑖, 𝑌𝑗, 𝑍𝑘 (i.e. 𝑇 with 𝑋 ∖𝑋𝑖,
𝑌 ∖ 𝑌𝑗, and 𝑍 ∖ 𝑍𝑘 zeroed out); 𝑇𝑖𝑗𝑘 is called a block of 𝑇 . Let 𝐿 = {𝑇𝑖𝑗𝑘 | (𝑖, 𝑗, 𝑘) ∈
[𝑘𝑋 ] × [𝑘𝑌 ] × [𝑘𝑍 ], 𝑇𝑖𝑗𝑘 ̸= 0} be the set of non-zero blocks. For 𝑖 ∈ [𝑘𝑋 ] let 𝐿𝑋𝑖

=
{𝑇𝑖𝑗′𝑘′ ∈ 𝐿 | (𝑗′, 𝑘′) ∈ [𝑘𝑌 ] × [𝑘𝑍 ]} be the set of blocks involving 𝑋𝑖, and define
similarly 𝐿𝑌𝑗

and 𝐿𝑍𝑘
.

We will be particularly interested in probability distributions 𝑝 : 𝐿 → [0, 1]. Let
𝑃 (𝐿) be the set of such distributions. For such a 𝑝 ∈ 𝑃 (𝐿), and for 𝑖 ∈ [𝑘𝑋 ], let
𝑝(𝑋𝑖) :=

∑︀
𝑇𝑖𝑗𝑘∈𝐿𝑋𝑖

𝑝(𝑇𝑖𝑗𝑘), and similarly 𝑝(𝑌𝑗) and 𝑝(𝑍𝑘). Then, define 𝑝𝑋 ∈ R by

𝑝𝑋 :=
∏︁

𝑖∈[𝑘𝑋 ]

(︂
|𝑋𝑖|
𝑝(𝑋𝑖)

)︂𝑝(𝑋𝑖)

,
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and 𝑝𝑌 and 𝑝𝑍 similarly. We can equivalently write 𝑝𝑋 = 2𝐻(𝑝(𝑋)), where 𝐻(𝑝(𝑋)) =∑︀
𝑖∈[𝑘𝑋 ]−𝑝(𝑋𝑖) log 𝑝(𝑋𝑖) is the entropy of the marginal distribution of 𝑝 on the parts

of 𝑋. This expression, which arises naturally in the Laser Method, will play an
important role in our upper bounds and lower bounds on 𝑆.

The Main Tool We now present the main tool for bounding 𝑆 in terms of the
quantities we just defined.

Theorem 5.3. For any tensor 𝑇 and partition of its variable sets,

𝑆(𝑇 ) ≤ lim sup
𝑝∈𝑃 (𝐿)

min{𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍}.

Proof. For any positive integer 𝑛, we can write

𝑇⊗𝑛 =
∑︁

(𝑃1,...,𝑃𝑛)∈𝐿𝑛

𝑃1 ⊗ · · · ⊗ 𝑃𝑛.

For a given (𝑃1, . . . , 𝑃𝑛) ∈ 𝐿𝑛, let 𝑑𝑖𝑠𝑡(𝑃1, . . . , 𝑃𝑛) be the probability distribution
on 𝐿 which results from picking a uniformly random 𝛼 ∈ [𝑛] and outputting 𝑃𝛼.
For a probability distribution 𝑝 : 𝐿 → [0, 1], define 𝐿𝑛,𝑝 := {(𝑃1, . . . , 𝑃𝑛) ∈ 𝐿𝑛 |
𝑑𝑖𝑠𝑡(𝑃1, . . . , 𝑃𝑛) = 𝑝}. Note that the number of 𝑝 for which 𝐿𝑛,𝑝 is nonempty is only
poly(𝑛), since they are the distributions which assign an integer multiple of 1/𝑛 to
each element of 𝐿. Let 𝐷 be the set of these probability distributions.

We can now rearrange:

𝑇⊗𝑛 =
∑︁
𝑝∈𝐷

∑︁
(𝑃1,...,𝑃𝑛)∈𝐿𝑛,𝑝

𝑃1 ⊗ · · · ⊗ 𝑃𝑛.

Hence,

𝑆(𝑇⊗𝑛) ≤
∑︁
𝑝∈𝐷

𝑆

⎛⎝ ∑︁
(𝑃1,...,𝑃𝑛)∈𝐿𝑛,𝑝

𝑃1 ⊗ · · · ⊗ 𝑃𝑛

⎞⎠
≤ poly(𝑛) ·max

𝑝∈𝐷
𝑆

⎛⎝ ∑︁
(𝑃1,...,𝑃𝑛)∈𝐿𝑛,𝑝

𝑃1 ⊗ · · · ⊗ 𝑃𝑛

⎞⎠ .

For any probability distribution 𝑝 : 𝐿 → [0, 1], let us count the number of x-
variables used in

(︁∑︀
(𝑃1,...,𝑃𝑛)∈𝐿𝑛,𝑝

𝑃1 ⊗ · · · ⊗ 𝑃𝑛

)︁
. These are the tuples of the form

(𝑥1, . . . , 𝑥𝑛) ∈ 𝑋𝑛 where, for each 𝑖 ∈ [𝑘𝑋 ], there are exactly 𝑛 · 𝑝(𝑋𝑖) choices of 𝑗 for

62



which 𝑥𝑗 ∈ 𝑋𝑖. The number of these is1(︂
𝑛

𝑛 · 𝑝(𝑋1), 𝑛 · 𝑝(𝑋2), . . . , 𝑛 · 𝑝(𝑋𝑘𝑋 )

)︂
·
∏︁

𝑖∈[𝑘𝑋 ]

|𝑋𝑖|𝑛·𝑝(𝑋𝑖).

This is upper bounded by 𝑝𝑛+𝑜(𝑛)
𝑋 . It follows that 𝑆𝑥

(︁∑︀
(𝑃1,...,𝑃𝑛)∈𝐿𝑛,𝑝

𝑃1 ⊗ · · · ⊗ 𝑃𝑛

)︁
≤

𝑝
𝑛+𝑜(𝑛)
𝑋 . We can similarly argue about 𝑆𝑦 and 𝑆𝑧. Hence,

𝑆(𝑇⊗𝑛) ≤ poly(𝑛) ·max
𝑝∈𝐷

𝑆

⎛⎝ ∑︁
(𝑃1,...,𝑃𝑛)∈𝐿𝑛,𝑝

𝑃1 ⊗ · · · ⊗ 𝑃𝑛

⎞⎠
≤ poly(𝑛) ·max

𝑝∈𝐷
min{𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍}𝑛+𝑜(𝑛)

≤ poly(𝑛) · lim sup
𝑝∈𝑃 (𝐿)

min{𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍}𝑛+𝑜(𝑛).

Hence, 𝑆(𝑇⊗𝑛) ≤ lim sup𝑝 min{𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍}𝑛+𝑜(𝑛), and the desired result follows.

We make one remark about the quantity 𝑝𝑋 in Theorem 5.3 before continuing.
Suppose 𝑇 is over 𝑋, 𝑌, 𝑍 with |𝑋| = |𝑌 | = |𝑍| = 𝑞. For any probability distribution
𝑝 we always have 𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍 ≤ 𝑞, and moreover we only have 𝑝𝑋 = 𝑞 when 𝑝(𝑋𝑖) =
|𝑋𝑖|/𝑞 for each 𝑖. It follows that if no probability distribution 𝑝 is 𝛿-close (say, in ℓ1
distance) to having 𝑝(𝑋𝑖) = |𝑋𝑖|/𝑞 for all 𝑖, 𝑝(𝑌𝑗) = |𝑌𝑗|/𝑞 for all 𝑗, and 𝑝(𝑍𝑘) = |𝑍𝑘|/𝑞
for all 𝑘, simultaneously, then we get 𝑆(𝑇 ) ≤ 𝑞1−𝑓(𝛿) for some increasing function 𝑓
with 𝑓(𝛿) > 0 for all 𝛿 > 0. This gives a simple test for whether Theorem 5.3 can
give a nontrivial upper bound on 𝑆(𝑇 ) for a tensor 𝑇 .

Symmetric Block Partitions We make a remark about applying Theorem 5.3 to
variable-symmetric tensors. This remark has implicitly been used in past work on
applying the Laser Method, such as [CW90], but we prove it here for completeness.
Recall the notation in Section 4.5 about variable-symmetric tensors.

If 𝑇 is a variable-symmetric tensor minimal over 𝑋, 𝑌, 𝑍, then partitions 𝑋 =
𝑋1 ∪ · · · ∪𝑋𝑘𝑋 , 𝑌 = 𝑌1 ∪ · · · ∪ 𝑌𝑘𝑌 , 𝑍 = 𝑍1 ∪ · · · ∪ 𝑍𝑘𝑍 of the variable sets are called
𝑇 -symmetric if (using the partition notation above) 𝑘𝑋 = 𝑘𝑌 = 𝑘𝑍 , |𝑋𝑖| = |𝑌𝑖| = |𝑍𝑖|
for all 𝑖 ∈ [𝑘𝑋 ], and the block 𝑇𝑗𝑘𝑖 = 𝑟𝑜𝑡(𝑇𝑖𝑗𝑘) for all (𝑖, 𝑗, 𝑘) ∈ [𝑘𝑋 ]3. For the 𝐿
resulting from such a 𝑇 -symmetric partition, a probability distribution 𝑝 ∈ 𝑃 (𝐿) is
called 𝑇 -symmetric if it satisfies 𝑝(𝑇𝑖𝑗𝑘) = 𝑝(𝑇𝑗𝑘𝑖) for all (𝑖, 𝑗, 𝑘) ∈ [𝑘𝑋 ]3, and we write
𝑃 𝑠𝑦𝑚(𝐿) ⊆ 𝑃 (𝐿) for the set of such 𝑇 -symmetric distributions. Notice in particular
that any 𝑝 ∈ 𝑃 𝑠𝑦𝑚(𝐿) satisfies 𝑝𝑋 = 𝑝𝑌 = 𝑝𝑍 .

Proposition 5.4. Suppose 𝑇 is a variable-symmetric tensor over 𝑋, 𝑌, 𝑍, and 𝑋 =
𝑋1 ∪ · · · ∪𝑋𝑘𝑋 , 𝑌 = 𝑌1 ∪ · · · ∪ 𝑌𝑘𝑌 , 𝑍 = 𝑍1 ∪ · · · ∪ 𝑍𝑘𝑍 are 𝑇 -symmetric partitions.

1Recall from Proposition 2.5 that, for fixed 𝑝𝑖s, we have
(︀

𝑛
𝑝1𝑛,𝑝2𝑛,...,𝑝ℓ𝑛

)︀
≤
(︀∏︀

𝑖 𝑝
−𝑝𝑖

𝑖

)︀𝑛+𝑜(𝑛)
.

Throughout this dissertation we use the convention that 𝑝𝑝𝑖

𝑖 = 1 when 𝑝𝑖 = 0.
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Then,
𝑆(𝑇 ) ≤ lim sup

𝑝∈𝑃 𝑠𝑦𝑚(𝐿)

𝑝𝑋 .

Proof. We know from Theorem 5.3 that 𝑆(𝑇 ) ≤ lim sup𝑝∈𝑃 (𝐿) min{𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍}. We
will show that for any 𝑝 ∈ 𝑃 (𝐿), there is a 𝑝′ ∈ 𝑃 𝑠𝑦𝑚(𝐿) such that min{𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍} ≤
min{𝑝′𝑋 , 𝑝′𝑌 , 𝑝′𝑍}, which means that in fact, 𝑆(𝑇 ) ≤ lim sup𝑝∈𝑃 𝑠𝑦𝑚(𝐿) min{𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍}.
Finally, the desired result will follow since, for any 𝑝′ ∈ 𝑃 𝑠𝑦𝑚(𝐿), we have 𝑝′𝑋 = 𝑝′𝑌 =
𝑝′𝑍 .

Consider any 𝑝 ∈ 𝑃 (𝐿), and define the distribution 𝑝′ ∈ 𝑃 𝑠𝑦𝑚(𝐿) by
𝑝′(𝑇𝑖𝑗𝑘) := (𝑝(𝑇𝑖𝑗𝑘) + 𝑝(𝑇𝑗𝑘𝑖) + 𝑝(𝑇𝑘𝑖𝑗))/3 for each 𝑇𝑖𝑗𝑘 ∈ 𝐿. In order to show that
min{𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍} ≤ 𝑝′𝑋 , we will show that (𝑝𝑋𝑝𝑌 𝑝𝑍)1/3 ≤ 𝑝′𝑋 :

(𝑝𝑋𝑝𝑌 𝑝𝑍)1/3 =
∏︁

𝑖∈[𝑘𝑋 ]

(︂
|𝑋𝑖|
𝑝(𝑋𝑖)

)︂𝑝(𝑋𝑖)/3(︂ |𝑌𝑖|
𝑝(𝑌𝑖)

)︂𝑝(𝑌𝑖)/3(︂ |𝑍𝑖|
𝑝(𝑍𝑖)

)︂𝑝(𝑍𝑖)/3

=
∏︁

𝑖∈[𝑘𝑋 ]

|𝑋𝑖|𝑝
′(𝑋𝑖)

(𝑝(𝑋𝑖)𝑝(𝑋𝑖)𝑝(𝑌𝑖)𝑝(𝑌𝑖)𝑝(𝑍𝑖)𝑝(𝑍𝑖))1/3

≤
∏︁

𝑖∈[𝑘𝑋 ]

|𝑋𝑖|𝑝
′(𝑋𝑖)

𝑝′(𝑋𝑖)𝑝
′(𝑋𝑖)

= 𝑝′𝑋 ,

where the second-to-last step follows from the fact that for any real numbers 𝑎, 𝑏, 𝑐 ∈
[0, 1], setting 𝑑 = (𝑎+ 𝑏+ 𝑐)/3, we have 𝑎𝑎𝑏𝑏𝑐𝑐 ≥ 𝑑3𝑑.

Proposition 5.4 will help simplify calculations when we apply Theorem 5.3 to
variable-symmetric tensors later in this Chapter.

5.3.3 Bounds from Parts with Low X-Rank

Finally we give our third tool. This tool will be the least important in proving bounds
on 𝑆 below, but in general it can help to extend upper bounds on 𝑆 from tensors 𝐵 for
which upper bounds on 𝑆(𝐵) are known to tensors 𝑇 which are slight modifications
of 𝐵.

For a tensor 𝑇 , let 𝑚(𝑇 ) := max{𝑆𝑥(𝑇 ), 𝑆𝑦(𝑇 ), 𝑆𝑧(𝑇 )}. Recall from Lemma 5.1
that for any two tensors 𝐴,𝐵 we have 𝑆(𝐴⊗𝐵) ≤ 𝑆(𝐴) ·𝑚(𝐵).

In general, for two tensors 𝐴 and 𝐵, even if 𝑆(𝐴) and 𝑆(𝐵) are ‘small’, it might
still be the case that 𝑆(𝐴 + 𝐵) is ‘large’, much larger than 𝑆(𝐴) + 𝑆(𝐵). Here we
show that if, not only is 𝑆(𝐴) small, but even 𝑆𝑥(𝐴) is small, then we can get a decent
bound on 𝑆(𝐴+𝐵).

Theorem 5.4. Suppose 𝑇,𝐴,𝐵 are tensors such that 𝐴+𝐵 = 𝑇 . Then,

𝑆(𝑇 ) ≤
(︂

𝑚(𝐴)

(1− 𝑝) · 𝑆𝑥(𝐴)

)︂1−𝑝

· 1

𝑝𝑝
,
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where 𝑝 ∈ [0, 1] is given by

𝑝 :=
log
(︁

𝑆𝑥(𝐵)

𝑆(𝐵)

)︁
log
(︁

𝑚(𝐴)
𝑆𝑥(𝐴)

)︁
+ log

(︁
𝑆𝑥(𝐵)

𝑆(𝐵)

)︁ .
Proof Sketch. We begin by, for any integers 𝑛 ≥ 𝑘 ≥ 0, giving bounds on 𝑆(𝐴⊗𝑘 ⊗
𝐵⊗(𝑛−𝑘)). First, since 𝑆𝑥 is submultiplicative, we have

𝑆(𝐴⊗𝑘 ⊗𝐵⊗(𝑛−𝑘)) ≤ 𝑆𝑥(𝐴⊗𝑘 ⊗𝐵⊗(𝑛−𝑘)) ≤ 𝑆𝑥(𝐴)𝑘 · 𝑆𝑥(𝐵)𝑛−𝑘.

Second, from the definition of 𝑚, we have

𝑆(𝐴⊗𝑘 ⊗𝐵⊗(𝑛−𝑘)) ≤ 𝑚(𝐴⊗𝑘) · 𝑆(𝐵⊗(𝑛−𝑘)) ≤ 𝑚(𝐴)𝑘 · 𝑆(𝐵)𝑛−𝑘.

It follows that for any positive integer 𝑛 we have

𝑆(𝑇⊗𝑛) ≤
𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
· 𝑆(𝐴⊗𝑘 ⊗𝐵⊗(𝑛−𝑘))

≤
𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
·min{𝑆𝑥(𝐴)𝑘 · 𝑆𝑥(𝐵)𝑛−𝑘,𝑚(𝐴)𝑘 · 𝑆(𝐵)𝑛−𝑘}.

We can see that the quantity
(︀
𝑛
𝑘

)︀
· min{𝑆𝑥(𝐴)𝑘 · 𝑆𝑥(𝐵)𝑛−𝑘,𝑚(𝐴)𝑘 · 𝑆(𝐵)𝑛−𝑘} is

maximized at 𝑘 = 𝑝𝑛, and the result follows.

5.4 Slice Rank Lower Bounds via the Laser Method
In the previous section, we gave three general tools for proving upper bounds on
𝑆(𝑇 ). Before applying them to particular tensors of interest, we begin in this sec-
tion by giving a general tool for proving lower bounds on 𝑆(𝑇 ). Our main tool for
proving lower bounds will be the Laser Method, the same technique we described in
Subsection 4.6.1 which Strassen, Coppersmith, and Winograd developed for proving
upper bounds on 𝜔. The Laser Method only applies to tensors 𝑇 with certain block
structure, but we will show that when it applies to 𝑇 , then not only does it give
a lower bound on 𝑆(𝑇 ), but that the resulting bound matches the upper bound on
𝑆(𝑇 ) from one of our upper bounding tools, Theorem 5.3.

Consider any tensor 𝑇 which is minimal over 𝑋, 𝑌, 𝑍, and let 𝑋 = 𝑋1∪· · ·∪𝑋𝑘𝑋 ,
𝑌 = 𝑌1 ∪ · · · ∪ 𝑌𝑘𝑌 , 𝑍 = 𝑍1 ∪ · · · ∪𝑍𝑘𝑍 be partitions of the three variable sets. Define
𝑇𝑖𝑗𝑘, 𝐿, and 𝑝𝑋 for a probability distribution 𝑝 on 𝐿, as in the top of Subsection 5.3.2.
Recall in particular that 𝑇𝑖𝑗𝑘 is 𝑇 restricted to the variable sets 𝑋𝑖, 𝑌𝑗, and 𝑍𝑘.

Definition 5.1. We say that 𝑇 , along with partitions of 𝑋, 𝑌, 𝑍, is a laser-ready
tensor partition if the following three conditions are satisfied:

(1) For every (𝑖, 𝑗, 𝑘) ∈ [𝑘𝑋 ]× [𝑘𝑌 ]× [𝑘𝑍 ], either 𝑇𝑖𝑗𝑘 = 0, or else 𝑇𝑖𝑗𝑘 has a degener-
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ation to a tensor ⟨𝑎, 𝑏, 𝑐⟩ with 𝑎𝑏 = |𝑋𝑖|, 𝑏𝑐 = |𝑌𝑗|, and 𝑐𝑎 = |𝑍𝑘| (i.e. a matrix
multiplication tensor which is as big as possible given |𝑋𝑖|, |𝑌𝑗|, and |𝑍𝑘|).

(2) There is an integer 𝛼 such that 𝑇𝑖𝑗𝑘 ̸= 0 only if 𝑖+ 𝑗 + 𝑘 = 𝛼.

(3) 𝑇 is variable-symmetric, and the partitions are 𝑇 -symmetric.

These conditions match those discussed in Subsection 4.6.1, and are exactly those
required for the original Laser Method used by Coppersmith and Winograd [CW90]
applies to 𝑇 . We note that condition (3) is a simplifying assumption rather than
a real condition on 𝑇 : similar to the discussion in Section 4.5, for any tensor 𝑇
and partitions satisfying conditions (1) and (2), the tensor 𝑠𝑦𝑚(𝑇 ) along with the
corresponding partitions on its variables (which arise from taking the products of the
partitions of the variables of 𝑇 ), satisfies all three conditions, gives at least as good
a bound on 𝜔 using the Laser Method as 𝑇 and the original partitions, and more
generally has 𝜔𝑢(𝑠𝑦𝑚(𝑇 )) ≤ 𝜔𝑢(𝑇 ).

The precise way in which the Laser Method applies to a laser-ready tensor partition
is as follows.

Theorem 5.5 ([CW90, DS13, Wil12]). Suppose 𝑇 , along with the partitions of
𝑋, 𝑌, 𝑍, is a laser-ready tensor partition. Then, for any distribution 𝑝 ∈ 𝑃 𝑠𝑦𝑚(𝐿),
and any positive integer 𝑛, the tensor 𝑇⊗𝑛 has a degeneration into⎛⎝ ∏︁

𝑖∈[𝑘𝑋 ]

𝑝(𝑋𝑖)
−𝑝(𝑋𝑖)

⎞⎠𝑛−𝑜(𝑛)

⊙ ⟨𝑎, 𝑎, 𝑎⟩, (5.1)

where

𝑎 =

⎛⎝ ∏︁
𝑇𝑖𝑗𝑘∈𝐿

|𝑋𝑖|𝑝(𝑇𝑖𝑗𝑘)

⎞⎠𝑛/2−𝑜(𝑛)

. (5.2)

Proof. This proof is relatively detailed and technical; a reader willing to take the
Theorem statement for granted may wish to skip reading it and instead read the
overview in Subsection 4.6.1.

We begin by assuming that 𝑝(𝑇𝑖𝑗𝑘) is an integer multiple of 1/𝑛 for all 𝑖, 𝑗, 𝑘 ∈
[𝑘𝑋 ]. If this is not the case, it can be achieved by slightly modifying 𝑝 to a new
probability distribution which changes 𝑝(𝑇𝑖𝑗𝑘) by at most 1/𝑛 for each 𝑖, 𝑗, 𝑘. This in
particular changes 𝑝(𝑋𝑖) by at most 𝑘𝑋/𝑛 for all 𝑖 ∈ [𝑘𝑋 ], and so the changes in the
quantities (5.1) and (5.2) are subsumed by the ‘𝑜(𝑛)’s in the exponents.

We now proceed to describe the degeneration. We will zero out variables in three
phases, leaving a tensor which easily degenerates to the desired tensor after the third
phase. We will use the partition notation from Subsection 5.3.2 and Theorem 5.3.

Phase One. We say a variable 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑋𝑛 is 𝑝-satisfying if, for all
𝑖 ∈ [𝑘𝑋 ], the number of 𝑗 ∈ [𝑛] such that 𝑥𝑗 ∈ 𝑋𝑖 is 𝑛 · 𝑝(𝑋𝑖), and similarly for a
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𝑦 ∈ 𝑌 𝑛 or a 𝑧 ∈ 𝑍𝑛. In phase one, we zero out all 𝑥 ∈ 𝑋𝑛, 𝑦 ∈ 𝑌 𝑛, and 𝑧 ∈ 𝑍𝑛 which
are not 𝑝-satisfying.

Call an 𝐼 ∈ {𝑋1, . . . , 𝑋𝑘𝑋}𝑛 (or similar for 𝑦 and 𝑧 variables) a block of variables.
Notice that that for each block of variables 𝐼, either all its elements are 𝑝-satisfying,
or none are; call 𝐼 𝑝-satisfying if all its elements are. The number of 𝑝-satisfying
blocks of variables is

𝐶 :=

(︂
𝑛

𝑛 · 𝑝(𝑋1), 𝑛 · 𝑝(𝑋2), . . . , 𝑛 · 𝑝(𝑋𝑘𝑋 )

)︂
=

⎛⎝ ∏︁
𝑖∈[𝑘𝑋 ]

𝑝(𝑋𝑖)
−𝑝(𝑋𝑖)

⎞⎠𝑛−𝑜(𝑛)

,

which is the left-hand quantity in (5.1). For 𝐼 = (𝑋𝑖1 , . . . , 𝑋𝑖𝑛) ∈ {𝑋1, . . . , 𝑋𝑘𝑋}𝑛,
𝐽 = (𝑌𝑗1 , . . . , 𝑌𝑗𝑛) ∈ {𝑌1, . . . , 𝑌𝑘𝑋}𝑛, and 𝐾 = (𝑍𝑘1 , . . . , 𝑍𝑘𝑛) ∈ {𝑍1, . . . , 𝑍𝑘𝑋}𝑛, if
𝐼, 𝐽,𝐾 are 𝑝-satisfying, and are such that 𝑇𝐼ℓ𝑗ℓ𝑘ℓ ∈ 𝐿 for all ℓ ∈ [𝑛], then we say
(𝐼, 𝐽,𝐾) is a surviving triple. In particular, if (𝐼, 𝐽,𝐾) is a surviving triple, then
𝑇𝐼𝐽𝐾 :=

⨂︀𝑛
ℓ=1 𝑇𝑖ℓ𝑗ℓ𝑘ℓ remains after phase one of zeroing outs. From condition (1) in

the definition of a laser-ready tensor partition, we have that 𝑇𝐼𝐽𝐾 D ⟨𝑎, 𝑎, 𝑎⟩. Thus, if
it were the case that, for each 𝑝-satisfying 𝐼, there were exactly one surviving triple
involving 𝐼, and similarly for each 𝑝-satisfying 𝐽 and 𝐾, then the result of phase one
would be a desired tensor!

This is unfortunately not yet the case, but in the remaining steps we will zero
out more blocks of variables so that this will become the case. Let 𝐴 be the number
of surviving triples, and 𝐵 be the number of surviving triples involving a fixed 𝑝-
satisfying block 𝐼. Note by symmetry that 𝐵 is independent of which 𝐼 we pick, and
whether 𝐼 is a block of 𝑥, 𝑦, or 𝑧 variables, and moreover that 𝐵 = 𝐴/𝐶. Although
we could count 𝐴 and 𝐵 exactly using multinomial coefficients, it turns out we will
only need the simple bound 𝐵 ≤ 2𝑂(𝑛).

Phase Two. Set 𝑀 = 4𝐵 + 1. In this phase, we will use a result of Salem and
Spencer [SS42]: There is a subset 𝐻 ⊆ [𝑀 ] of size |𝐻| ≥ 𝑀1−𝑜(1) ≥ 𝑀/2𝑜(𝑛) which
does not contain any nontrivial three-term arithmetic progressions mod 𝑀 ; in other
words, if 𝑎, 𝑏, 𝑐 ∈ 𝐻 such that 𝑎+ 𝑏 = 2𝑐 (mod 𝑀), then 𝑎 = 𝑏 = 𝑐. Let 𝑀 ′ := |𝐻|.

Recall from condition (2) in the definition of a laser-ready tensor partition that
there is a 𝛼 ∈ N such that 𝑇𝑖𝑗𝑘 ∈ 𝐿 only if 𝑖+ 𝑗 + 𝑘 = 𝛼. In particular, if (𝐼, 𝐽,𝐾) is
a surviving triple, then (using the notation above) 𝑖ℓ + 𝑗 + ℓ+ 𝑘ℓ = 𝛼 for all ℓ ∈ [𝑛].

Pick independently and uniformly random 𝑤0, 𝑤1, . . . , 𝑤𝑛 ∈ Z𝑀 , and using them
define three hash functions (which map variable blocks to integers mod 𝑀) ℎ𝑋 :
{𝑋1, . . . , 𝑋𝑘𝑋}𝑛 → Z𝑀 , ℎ𝑌 : {𝑌1, . . . , 𝑌𝑘𝑋}𝑛 → Z𝑀 , ℎ𝑍 : {𝑍1, . . . , 𝑍𝑘𝑋}𝑛 → Z𝑀 by:
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ℎ𝑋(𝑋𝑖1 , . . . , 𝑋𝑖𝑛) := 2
𝑛∑︁

ℓ=1

𝑤ℓ · 𝑖ℓ (mod 𝑀),

ℎ𝑌 (𝑌𝑗1 , . . . , 𝑌𝑗𝑛) := 2𝑤0 + 2
𝑛∑︁

ℓ=1

𝑤ℓ · 𝑗ℓ (mod 𝑀),

ℎ𝑍(𝑍𝑘1 , . . . , 𝑍𝑘𝑛) := 𝑤0 +
𝑛∑︁

ℓ=1

𝑤ℓ · (𝛼− 𝑘ℓ) (mod 𝑀).

Notice that in any surviving triple (𝐼, 𝐽,𝐾):

∙ ℎ𝑋(𝐼) + ℎ𝑌 (𝐽) = 2ℎ𝑍(𝐾) (mod 𝑀), and

∙ not only is ℎ𝑋(𝐼) a uniformly random value in [𝑀 ], but it remains a uniformly
random value even conditioned on the value ℎ𝑌 (𝐽) (and similarly, and one of
ℎ𝑋(𝐼), ℎ𝑌 (𝐽), and ℎ𝑍(𝐾) is uniformly random conditioned on any other one).

In phase two, we zero out all the 𝑥-variables in any block 𝐼 such that ℎ𝑋(𝐼) /∈ 𝐻, all
the 𝑦-variables in any block 𝐽 such that ℎ𝑌 (𝐽) /∈ 𝐻, and all the 𝑧-variables in any
block 𝐾 such that ℎ𝑍(𝐾) /∈ 𝐻. It follows from the definition of 𝐻 that any surviving
triple (𝐼, 𝐽,𝐾) which also survives phase two satisfies ℎ𝑋(𝐼) = ℎ𝑌 (𝐽) = ℎ𝑍(𝐾). For
each 𝛽 ∈ 𝐻, let 𝑆𝛽 be the set of surviving triples (𝐼, 𝐽,𝐾) with ℎ𝑋(𝐼) = ℎ𝑌 (𝐽) =
ℎ𝑍(𝐾) = 𝛽.

Phase Three. Now, in phase three, for every pair of distinct surviving triples
(which survived phases one and two) (𝐼, 𝐽,𝐾) and (𝐼, 𝐽 ′, 𝐾 ′) which share the block 𝐼,
we will zero out all variables in the block 𝐼 (and then similarly for 𝑦 and 𝑧 variables).
Hence, for every surviving triple (𝐼, 𝐽,𝐾) which survives phase three, there are no
other surviving triples which survive phase three which share any of 𝐼, 𝐽 , or 𝐾. We
will next show that there is a choice of the randomness above so that the number
of surviving triples which survive phase three is ≥ 𝐶/𝑛𝑜(1). This (along with the
discussion earlier in phase one) will complete the proof.

We begin by computing some simple expected values. First, for a fixed 𝛽 ∈ 𝐻, we
compute the expected size of 𝑆𝛽. The probability that a given surviving triple (from
phase one) (𝐼, 𝐽,𝐾) also survived phase two and is in 𝑆𝛽 is 𝑀−2. Indeed, each of
ℎ𝑋(𝐼) and ℎ𝑌 (𝐽) equals 𝛽 independently with probability 𝑀−1, and then given those
two events, it follows that ℎ𝑍(𝐾) = 𝛽 as well. Hence, by linearity of expectation, the
expected size of 𝑆𝛽 is 𝐴/𝑀2.

Second, for fixed 𝛽 ∈ 𝐻, we compute an upper bound on the expected number of
unordered pairs of distinct surviving triples (from phase one) (𝐼, 𝐽,𝐾) and (𝐼, 𝐽 ′, 𝐾 ′)
which share the block 𝐼, and which are both in 𝑆𝛽. There are 𝐴 choices for a surviving
triple (𝐼, 𝐽,𝐾), then 𝐵−1 choices for the surviving triple (𝐼, 𝐽 ′, 𝐾 ′). Both triples will
be in 𝑆𝛽 if and only if ℎ𝑋(𝐼) = ℎ𝑌 (𝐽) = ℎ𝑌 (𝐽 ′) = 𝛽. Since each of those three hash
values is independent, this happens with probability 𝑀−3. In all, an upper bound
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on the expected value is 1
2
𝐴𝐵/𝑀3 (the 1

2
is because we are counting the same pair

twice). It follows that the expected number of surviving triples which are zeroed out
in phase three is at most 3𝐴𝐵/𝑀3 (since each surviving triple which is zeroed out is
in at least one pair which share a block, and we need to count each of the three types
of blocks).

From the calculations above, we know that for a fixed 𝛽, the expected number of
surviving triples in 𝑆𝛽 which survive past phase three is at least 𝐴/𝑀2− 3𝐴𝐵/𝑀3 ≥
1
4
𝐴/𝑀2. Hence, summing over all 𝛽 ∈ 𝐻, the expected number of surviving triples

which survive past phase three is at least 1
4
𝑀 ′𝐴/𝑀2 ≥ 𝐴/(𝑀 ·𝑛𝑜(1)) ≥ 𝐴/(𝐵 ·𝑛𝑜(1)) =

𝐶/𝑛𝑜(1). Hence, there is a choice of the randomness which achieves at least this many,
as desired!

Applying the Laser Method, we get the following key new result about the asymp-
totic slice rank of laser-ready tensor partitions.

Theorem 5.6. Suppose tensor 𝑇 , along with the partitions of 𝑋, 𝑌, 𝑍, is a laser-ready
tensor partition. Then,

𝑆(𝑇 ) = lim sup
𝑝∈𝑃 𝑠𝑦𝑚(𝐿)

𝑝𝑋 .

Proof. The upper bound, 𝑆(𝑇 ) ≤ lim sup𝑝∈𝑃 𝑠𝑦𝑚(𝐿) 𝑝𝑋 , is given by Proposition 5.4.
For the lower bound, we know from Theorem 5.5 that for all 𝑝 ∈ 𝑃 𝑠𝑦𝑚(𝐿), and all

positive integers 𝑛, the tensor 𝑇⊗𝑛 has a degeneration into⎛⎝ ∏︁
𝑖∈[𝑘𝑋 ]

𝑝(𝑋𝑖)
−𝑝(𝑋𝑖)

⎞⎠𝑛−𝑜(𝑛)

⊙ ⟨𝑎, 𝑎, 𝑎⟩,

where

𝑎 =

⎛⎝ ∏︁
𝑇𝑖𝑗𝑘∈𝐿

|𝑋𝑖|𝑝(𝑇𝑖𝑗𝑘)

⎞⎠𝑛/2−𝑜(𝑛)

.

By Proposition 5.3, this means 𝑇⊗𝑛 has a degeneration to an independent tensor of
size ⎛⎝ ∏︁

𝑖∈[𝑘𝑋 ]

𝑝(𝑋𝑖)
−𝑝(𝑋𝑖)

⎞⎠𝑛−𝑜(𝑛)

· 𝑎2 = 𝑝
𝑛−𝑜(𝑛)
𝑋 .

Applying Propositions 5.1 and 5.2 implies that 𝑆(𝑇 ) ≥ 𝑝𝑋 for all 𝑝 ∈ 𝑃 𝑠𝑦𝑚(𝐿), as
desired.

Corollary 5.3. If 𝑇 is a tensor with a laser-ready tensor partition, and applying the
Laser Method to 𝑇 with this partition yields an upper bound on 𝜔 of 𝜔𝑢(𝑇 ) ≤ 𝑐 for
some 𝑐 > 2, then 𝜔𝑢(𝑇 ) > 2.

Proof. When the Laser Method for a given 𝑝 ∈ 𝑃 𝑠𝑦𝑚(𝐿) shows, as in Theorem 5.5,
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that 𝑇⊗𝑛 has a degeneration into⎛⎝ ∏︁
𝑖∈[𝑘𝑋 ]

𝑝(𝑋𝑖)
−𝑝(𝑋𝑖)

⎞⎠𝑛−𝑜(𝑛)

⊙ ⟨𝑎, 𝑎, 𝑎⟩,

the resulting upper bound on 𝜔𝑢(𝑇 ) is that⎛⎝ ∏︁
𝑖∈[𝑘𝑋 ]

𝑝(𝑋𝑖)
−𝑝(𝑋𝑖)

⎞⎠𝑛−𝑜(𝑛)

· 𝑎𝜔𝑢(𝑇 ) ≥ �̃�(𝑇 )𝑛.

In particular, since the left-hand side equals 𝑝𝑋 when 𝜔𝑢(𝑇 ) = 2, this yields 𝜔𝑢(𝑇 ) = 2
if and only if, for every 𝜀 > 0, there is a 𝑝 ∈ 𝑃 𝑠𝑦𝑚(𝐿) such that 𝑝𝑋 ≥ �̃�(𝑇 )1−𝜀.
In particular, if it does not yield 𝜔𝑢(𝑇 ) = 2, then there is a 𝛿 > 0 such that all
𝑝 ∈ 𝑃 𝑠𝑦𝑚(𝐿) have 𝑝𝑋 ≤ �̃�(𝑇 )1−𝛿. It follows from Theorem 5.6 that 𝑆(𝑇 ) ≤ �̃�(𝑇 )1−𝛿.
Combined with Theorem 5.1, this means that 𝜔𝑢(𝑇 ) ≥ 2/(1− 𝛿) > 2.

5.4.1 Slice Rank Versus Asymptotic Subrank

For a tensor 𝑇 , let 𝑄′(𝑇 ) denote the largest integer 𝑞 such that there is a degeneration
𝑇 D ⟨𝑞⟩. The asymptotic subrank of 𝑇 is defined as �̃�(𝑇 ) := lim sup𝑛∈N𝑄

′(𝑇⊗𝑛)1/𝑛.
Asymptotic Subrank is an important notion in Strassen’s theory of the Asymptotic
Spectrum of Tensors [Str86, Str91]. It can be thought of as ‘dual’ to asymptotic rank:
while �̃�(𝑇 ) measures the ‘cost’ of 𝑇 to convert from an independent tensor, �̃�(𝑇 ) is
a measure of the ‘value’ of 𝑇 in converting back to an independent tensor.

Propositions 5.1 and 5.2 above imply that �̃�(𝑇 ) ≤ 𝑆(𝑇 ) for all tensors 𝑇 . Simi-
larly, it is not hard to see that Theorem 5.1, our general bound on 𝜔𝑢(𝑇 ), holds with
𝑆 replaced by �̃�. One could thus conceivably hope to prove stronger lower bounds
than those which we will prove in the next section by bounding �̃� instead of 𝑆.

However, one interesting corollary of Theorem 5.6 above is that �̃�(𝑇 ) = 𝑆(𝑇 ) for
every laser-ready tensor 𝑇 . In particular, every tensor 𝑇 we study in the next section
will be laser-ready, so so such an improvement on our lower bounds on 𝜔𝑢(𝑇 ) using
�̃�(𝑇 ) is impossible for these tensors 𝑇

More generally, there are currently no known tensors 𝑇 for which the best known
upper bound on �̃�(𝑇 ) is smaller than the best known upper bound on 𝑆(𝑇 ) (including
the new bounds of [CVZ18, CVZ19]). Hence, novel tools for upper bounding �̃� would
be required for such an approach to proving better lower bounds on 𝜔𝑢.

Corollary 5.4. Every tensor 𝑇 with a laser-ready tensor partition has 𝑆(𝑇 ) = �̃�(𝑇 ).

Proof. All tensors satisfy 𝑆(𝑇 ) ≥ �̃�(𝑇 ). In Theorem 5.6, the upper bound on 𝑆(𝑇 )
showed that 𝑇⊗𝑛 has a degeneration to an independent tensor of size 𝑆(𝑇 )𝑛−𝑜(𝑛),
which implies that �̃�(𝑇 ) ≥ 𝑆(𝑇 ).
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5.5 Computing the Slice Ranks for Tensors of Inter-
est

In this section, we give slice rank upper bounds for a number of tensors of interest.
It follows from Theorem 5.6 above that all of the bounds we prove in this Section are
tight.

5.5.1 Generalized Coppersmith-Winograd Tensors

We begin with the generalized CW tensors defined in Subsection 4.6.1 above, which
for a positive integer 𝑞 and a permutation 𝜎 ∈ 𝑆𝑞 are given by

𝐶𝑊𝑞,𝜎 := 𝑥0𝑦0𝑧𝑞+1 + 𝑥0𝑦𝑞+1𝑧0 + 𝑥𝑞+1𝑦0𝑧0 +

𝑞∑︁
𝑖=1

(𝑥𝑖𝑦𝜎(𝑖)𝑧0 + 𝑥𝑖𝑦0𝑧𝑖 + 𝑥0𝑦𝑖𝑧𝑖).

The usual Coppersmith-Winograd tensor 𝐶𝑊𝑞 results by picking 𝜎 to be the
identity permutation. We can see that Theorems 5.2, 5.3, and 5.4 can all apply to
𝐶𝑊𝑞,𝜎 to prove nontrivial upper bounds on 𝑆(𝑇 ).

That said, we will now use Theorem 5.3 to prove a tight bound on 𝑆(𝐶𝑊𝑞,𝜎). Our
bound will imply that 𝜔𝑢(𝐶𝑊𝑞,𝜎) ≥ 2.16805 for all 𝑞 ∈ N and all 𝜎 ∈ 𝑆𝑞. Because
of Theorem 5.6, no better lower bound on 𝜔𝑢(𝐶𝑊𝑞,𝜎) is possible by arguing about
𝑆(𝐶𝑊𝑞,𝜎) or even �̃�(𝐶𝑊𝑞,𝜎).

We begin by partitioning the variable sets of 𝐶𝑊𝑞,𝜎, using the notation of Theo-
rem 5.3. Let 𝑋0 = {𝑥0}, 𝑋1 = {𝑥1, . . . , 𝑥𝑞}, and 𝑋2 = {𝑥𝑞+1}, so that 𝑋0 ∪𝑋1 ∪𝑋2

is a partition of the 𝑥-variables of 𝐶𝑊𝑞,𝜎.2 Similarly, let 𝑌0 = {𝑦0}, 𝑌1 = {𝑦1, . . . , 𝑦𝑞},
𝑌2 = {𝑦𝑞+1}, 𝑍0 = {𝑧0}, 𝑍1 = {𝑧1, . . . , 𝑧𝑞}, and 𝑍2 = {𝑧𝑞+1}. We can see this is a
𝐶𝑊𝑞,𝜎-symmetric partition with 𝐿 = {𝑇002, 𝑇020, 𝑇200, 𝑇011, 𝑇101, 𝑇110}.

Consider any probability distribution 𝑝 ∈ 𝑃 𝑠𝑦𝑚(𝐿). By symmetry, we know that
𝑝(𝑇002) = 𝑝(𝑇020) = 𝑝(𝑇200) = 𝑣 and 𝑝(𝑇011) = 𝑝(𝑇101) = 𝑝(𝑇110) = 1/3 − 𝑣 for some
value 𝑣 ∈ [0, 1/3]. Applying Theorem 5.3, and in particular Proposition 5.4, combined
with Theorem 5.6, yields:

𝑆(𝐶𝑊𝑞,𝜎) = sup
𝑣∈[0,1/3]

𝑞2(1/3−𝑣)

𝑣𝑣(2/3− 2𝑣)2/3−2𝑣(1/3 + 𝑣)1/3+𝑣
.

The values for the first few 𝑞 can be computed using optimization software as
follows:

2The sets of partitions were 1-indexed before, but we 0-index here for notational consistency with
past work.
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𝑞 𝑆(𝐶𝑊𝑞,𝜎)
1 2.7551 · · ·
2 3.57165 · · ·
3 4.34413 · · ·
4 5.07744 · · ·
5 5.77629 · · ·
6 6.44493 · · ·
7 7.08706 · · ·
8 7.70581 · · ·

Finally, using the lower bound �̃�(𝐶𝑊𝑞,𝜎) ≥ 𝑞 + 2 (in fact, it is known that
�̃�(𝐶𝑊𝑞,𝜎) = 𝑞 + 2), and the upper bound on 𝑆(𝐶𝑊𝑞,𝜎) we just proved, we can apply
Theorem 5.1 to give lower bounds 𝜔𝑢(𝐶𝑊𝑞,𝜎) ≥ 2 log(�̃�(𝐶𝑊𝑞,𝜎))/ log(𝑆(𝐶𝑊𝑞,𝜎)) ≥
2 log(𝑞 + 2)/ log(𝑆(𝐶𝑊𝑞,𝜎)) as follows:

𝑞 Lower Bound on 𝜔𝑢(𝐶𝑊𝑞,𝜎)
1 2.16805 · · ·
2 2.17794 · · ·
3 2.19146 · · ·
4 2.20550 · · ·
5 2.21912 · · ·
6 2.23200 · · ·
7 2.24404 · · ·
8 2.25525 · · ·

It seems clear numerically that the resulting lower bound on 𝜔𝑢(𝐶𝑊𝑞,𝜎) is increas-
ing with 𝑞 and is always at least 2.16805 . . .; below we give a simple proof of this,
concluding our main result about 𝐶𝑊𝑞,𝜎.

Theorem 5.7. 𝜔𝑢(𝐶𝑊𝑞,𝜎) ≥ 2.16805 for all 𝑞 ∈ N and 𝜎 ∈ 𝑆𝑞.

Proof. Define the function 𝑓 : [0, 1/3]→ R by

𝑓(𝑣) :=
1

𝑣𝑣(2/3− 2𝑣)2/3−2𝑣(1/3 + 𝑣)1/3+𝑣
.

We already showed that

𝜔𝑢(𝐶𝑊𝑞,𝜎) ≥ min
𝑣∈[0,1/3]

2
log(𝑞 + 2)

log(𝑞2/3−2𝑣 · 𝑓(𝑣))
.

Moreover, we saw above that 𝜔𝑢(𝐶𝑊𝑞,𝜎) ≥ 2.16805 for all 𝑞 ≤ 8.
Let 𝑣𝑞 denote the argmin for the optimization problem. In particular, for 𝑞 = 8, the

argmin is 𝑣8 = 0.017732422 . . .. From the 𝑞2/3−2𝑣 term in the optimization problem,
we see that 𝑣𝑞+1 ≤ 𝑣𝑞 for all 𝑞, and in particular, 𝑣𝑞 ≤ 𝑣8 for all 𝑞 > 8. It follows that
𝑓(𝑣𝑞) ≤ 𝑓(𝑣8) = 2.07389 . . . for all 𝑞 > 8. Thus, for all 𝑞 > 8 we have:

𝜔𝑢(𝐶𝑊𝑞,𝜎) ≥ min
𝑣∈[0,1/3]

2
log(𝑞 + 2)

log(𝑞2/3−2𝑣 · 𝑓(𝑣8))
= 2

log(𝑞 + 2)

log(𝑞2/3 · 𝑓(𝑣8))
.
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This expression equals 2.18562 . . . at 𝑞 = 9, and is easily seen to be increasing with 𝑞
for 𝑞 > 9, which implies as desired that 𝜔𝑢(𝐶𝑊𝑞,𝜎) ≥ 2.16805 for all 𝑞 ≥ 9 and hence
all 𝑞.

5.5.2 Generalized Simple Coppersmith-Winograd Tensors

Similar to 𝐶𝑊𝑞,𝜎, we can define for a positive integer 𝑞 and a permutation 𝜎 : [𝑞]→ [𝑞]
the simple Coppersmith-Winograd tensor 𝑐𝑤𝑞,𝜎 given by:

𝑐𝑤𝑞,𝜎 :=

𝑞∑︁
𝑖=1

(𝑥𝑖𝑦𝜎(𝑖)𝑧0 + 𝑥𝑖𝑦0𝑧𝑖 + 𝑥0𝑦𝑖𝑧𝑖).

These tensors, when 𝜎 is the identity permutation, are well-studied in the literature
on MM algorithms. For instance, Coppersmith and Winograd [CW90] showed that
if �̃�(𝑐𝑤2,𝑖𝑑) = 2 then 𝜔 = 2.

We will again give a tight bound on 𝑆(𝑐𝑤𝑞,𝜎) using Theorem 5.3 combined Theo-
rem 5.6. To apply Theorem 5.3, and in particular Proposition 5.4, we again pick
a partition of the variables. Let 𝑋0 = {𝑥0}, 𝑋1 = {𝑥1, . . . , 𝑥𝑞}, 𝑌0 = {𝑦0},
𝑌1 = {𝑦1, . . . , 𝑦𝑞}, 𝑍0 = {𝑧0}, and 𝑍1 = {𝑧1, . . . , 𝑧𝑞}. This is a 𝑐𝑤𝑞,𝜎-symmetric
partition with 𝐿 = {𝑇011, 𝑇101, 𝑇110}. There is a unique 𝑝 ∈ 𝑃 𝑠𝑦𝑚(𝐿), which assigns
probability 1/3 to each part. It follows that

𝑆(𝑐𝑤𝑞,𝜎) = (1/3)−1/3(2/3)−2/3 · 𝑞2/3 =
3

22/3
· 𝑞2/3.

Again, we will see in the next section that this bound is tight. Using the lower
bound �̃�(𝑐𝑤𝑞,𝜎) ≥ 𝑞 + 1 from ‘flattening’, we get the lower bound

𝜔𝑢(𝑐𝑤𝑞,𝜎) ≥ 2
log(𝑞 + 1)

log
(︀

3
22/3
· 𝑞2/3

)︀ .
The first few values are as follows; note that we cannot get a bound better than

2 when 𝑞 = 2 because of Coppersmith and Winograd’s remark: if �̃�(𝑐𝑤2) = 2 then
𝜔𝑢(𝑐𝑤2) = 2, but the best known bound is only �̃�(𝑐𝑤2) ≤ 3.

𝑞 Lower Bound on 𝜔𝑢(𝑐𝑤𝑞,𝜎)
1 2.17795 · · ·
2 2
3 2.02538 · · ·
4 2.06244 · · ·
5 2.09627 · · ·
6 2.12549 · · ·
7 2.15064 · · ·
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5.5.3 Cyclic Group Tensors

We next look at the group tensor 𝑇𝑞 of the cyclic group 𝐶𝑞 for 𝑞 ∈ N:

𝑇𝑞 =

𝑞−1∑︁
𝑖=0

𝑞−1∑︁
𝑗=0

𝑥𝑖𝑦𝑗𝑧𝑖+𝑗 mod 𝑞.

𝑇𝑞 is one of the first tensors which was studied in the Group-theoretic Method [CU03].
Define also the ‘lower triangular’ version of 𝑇𝑞, called 𝑇 𝑙𝑜𝑤𝑒𝑟

𝑞 , as:

𝑇 𝑙𝑜𝑤𝑒𝑟
𝑞 =

𝑞−1∑︁
𝑖=0

𝑞−1−𝑖∑︁
𝑗=0

𝑥𝑖𝑦𝑗𝑧𝑖+𝑗.

It is known that �̃�(𝑇𝑞) = �̃�(𝑇 𝑙𝑜𝑤𝑒𝑟
𝑞 ) = 𝑞, and a Coppersmith-Winograd-like analysis

is possible to yield the best known bound 𝜔𝑢(𝑇7), 𝜔𝑢(𝑇 𝑙𝑜𝑤𝑒𝑟
7 ) ≤ 2.373 (see Section 5.6

below for a proof).
While Theorem 5.3 does not give any nontrivial upper bounds on 𝑆(𝑇𝑞), it does

give nontrivial upper bounds on 𝑆(𝑇 𝑙𝑜𝑤𝑒𝑟
𝑞 ), by using the ‘trivial’ partition of the

variables into parts of size 1. Using computer optimization software, we can compute
𝑆(𝑇 𝑙𝑜𝑤𝑒𝑟

𝑞 ), using Theorem 5.3 where each partition contains exactly one variable,
combined with Theorem 5.6, for the first few values of 𝑞:

𝑞 𝑆(𝑇 𝑙𝑜𝑤𝑒𝑟
𝑞 )

2 1.88988 · · ·
3 2.75510 · · ·
4 3.61071 · · ·
5 4.46157 · · ·

We thus get the following lower bounds on 𝜔𝑢(𝑇 𝑙𝑜𝑤𝑒𝑟
𝑞 ) ≥ 2 log(𝑞)/ log(𝑆(𝑇 𝑙𝑜𝑤𝑒𝑟

𝑞 )):

𝑞 Lower Bound on 𝜔𝑢(𝑇 𝑙𝑜𝑤𝑒𝑟
𝑞 )

2 2.17795 · · ·
3 2.16805 · · ·
4 2.15949 · · ·
5 2.15237 · · ·

These numbers match the lower bounds obtained by [AW18a, BCC+17a] in their
study of 𝑇𝑞; our Theorem 5.3 can be viewed as an alternate tool to achieve those lower
bounds. The bound approaches 2 as 𝑞 →∞, as it is known that log(𝑆(𝑇𝑞))/ log(𝑞) =
1− 𝑜(1) as 𝑞 →∞ [BCC+17a].

There is a simple monomial degeneration 𝑇𝑞 D𝑚𝑑 𝑇
𝑙𝑜𝑤𝑒𝑟
𝑞 , and it is shown in [CVZ18,

Theorem 4.16] that there is a restriction 𝑇 𝑙𝑜𝑤𝑒𝑟
𝑞 ≥ 𝑇𝑞 over the field F𝑞, which implies

that our bounds above also hold for 𝑇𝑞 over F𝑞.
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5.5.4 Lower Triangular Tensors

More generally, we can give a strong characterization of lower triangular tensors 𝑇
for which Theorem 5.1 can prove 𝜔𝑢(𝑇 ) > 2.

Definition 5.2. For 𝑋 = {𝑥0, . . . , 𝑥𝑞−1}, 𝑌 = {𝑦0, . . . , 𝑦𝑞−1} and 𝑍 = {𝑧0, . . . , 𝑧𝑞−1},
a tensor 𝑇 over 𝑋, 𝑌, 𝑍 is lower triangular if

∙ For every 𝑖, 𝑗 ∈ {0, . . . , 𝑞−1}, there is at most one 𝑘 ∈ {0, . . . , 𝑞−1} such that3
𝑥𝑖𝑦𝑗𝑧𝑘 ∈ 𝑇 , and

∙ For every 𝑖, 𝑗 ∈ {0, . . . , 𝑞− 1} with 𝑖+ 𝑗 ≥ 𝑞, 𝑥𝑖𝑦𝑗𝑧𝑘 /∈ 𝑇 for any 𝑘 ∈ {1, . . . , 𝑞}.

Terms 𝑥𝑖𝑦𝑗𝑧𝑘 with 𝑖+ 𝑗 = 𝑞 − 1 are called diagonal terms.

Theorem 5.8. For 𝑋 = {𝑥0, . . . , 𝑥𝑞−1}, 𝑌 = {𝑦0, . . . , 𝑦𝑞−1} and 𝑍 = {𝑧0, . . . , 𝑧𝑞−1},
a lower triangular tensor 𝑇 over 𝑋, 𝑌, 𝑍 has 𝑆(𝑇 ) = 𝑞 if and only if it has 𝑞 diagonal
terms, no two of which share a 𝑧-variables.

Proof. First, consider any lower diagonal tensor 𝑇 whose 𝑞 diagonal terms do not share
𝑧-variables. Evidently 𝑆(𝑇 ) ≤ |𝑋| = 𝑞. There is a simple monomial degeneration
from 𝑇 to the tensor consisting only of its diagonal terms, given by 𝑚(𝑥𝑖) = 𝑚(𝑦𝑖) =
𝜆𝑞−𝑖 and 𝑚(𝑧𝑖) = 1 for all 𝑖. Since no two of the diagonal terms share 𝑧-variables, this
is a monomial degeneration from 𝑇 to an independent tensor of size 𝑞, which implies
that 𝑆(𝑇 ) = 𝑞.

Second, consider any lower diagonal tensor 𝑇 with 𝑆(𝑇 ) = 𝑞. Let 𝑓 : {0, . . . , 𝑞 −
1}2 → {0, . . . , 𝑞 − 1} be the map defining which 𝑧-variable appears in each term,
i.e. such that 𝑥𝑖𝑦𝑗𝑧𝑓(𝑖,𝑗) is the only term containing 𝑥𝑖𝑦𝑗 for each 𝑖, 𝑗 (we assume
that such a term exists for each 𝑖, 𝑗; if 𝑇 is missing any such terms, then the proof
is even simpler). By Theorem 5.3 (with each part in the partitions of the variables
having size 1), we know that for every 𝜅 > 0, there is a probability distribution
𝑝 : 𝑋 ⊗ 𝑌 ⊗ 𝑍 → [0, 1] whose support is on the terms of 𝑇 , such that for any fixed 𝑖,
𝑝(𝑥𝑖) :=

∑︀
𝑥𝑖𝑦𝑗𝑧𝑘

𝑝(𝑥𝑖𝑦𝑗𝑧𝑘) ≥ 1/𝑞−𝜅, and similarly for 𝑝(𝑦𝑗) and 𝑝(𝑧𝑘). Summing this
lower bound for all 𝑥-variables other than 𝑥𝑖 also shows that 𝑝(𝑥𝑖) ≤ 1/𝑞 + (𝑞 − 1)𝜅
for each 𝑖, and similarly for 𝑝(𝑦𝑗) and 𝑝(𝑧𝑘).

We now prove that for each 𝑗 ∈ {0, . . . , 𝑞 − 1}, we have 𝑝(𝑥𝑞−1−𝑗𝑦𝑗𝑧𝑓(𝑞−1−𝑗,𝑗)) ≥
1/𝑞 − 𝑂(𝜅), where we are thinking of 𝑞 as a constant, so the 𝑂 hides factors of 𝑞.
We prove this by strong induction on 𝑗. For the base case, when 𝑗 = 0, notice that
the term 𝑥𝑞−1𝑦0𝑧𝑓(𝑞−1,0) is the only term containing 𝑥𝑞−1, and so 𝑝(𝑥𝑞−1𝑦0𝑧𝑓(𝑞−1,0)) =
𝑝(𝑥𝑞−1) ≥ 1/𝑞 − 𝜅, as desired.

For the inductive step, note that for each 𝑗′ < 𝑗, we have by assumption that
𝑝(𝑥𝑞−1−𝑗′𝑦𝑗′𝑧𝑓(𝑞−1−𝑗′,𝑗′)) ≥ 1/𝑞 −𝑂𝑞(𝜅). Therefore, for each such 𝑗′,

3We write ‘𝑥𝑖𝑦𝑗𝑧𝑘 ∈ 𝑇 ’ to denote that the coefficient of 𝑥𝑖𝑦𝑗𝑧𝑘 in 𝑇 is nonzero.
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𝑝(𝑥𝑞−1−𝑗𝑦𝑗′𝑧𝑓(𝑖,𝑗′))

≤
𝑞−2−𝑗′∑︁
𝑖=0

𝑝(𝑥𝑖𝑦𝑗′𝑧𝑓(𝑖,𝑗′))

= 𝑝(𝑦𝑗′)− 𝑝(𝑥𝑞−1−𝑗′𝑦𝑗′𝑧𝑓(𝑞−1−𝑗′,𝑗′)) ≤ (1/𝑞 + (𝑞 − 1)𝜅)− (1/𝑞 −𝑂(𝜅)) = 𝑂(𝜅).

It follows as desired that

𝑝(𝑥𝑞−1−𝑗𝑦𝑗𝑧𝑓(𝑞−1−𝑗,𝑗)) = 𝑝(𝑥𝑞−1−𝑗)−
𝑗−1∑︁
𝑗′=0

𝑝(𝑥𝑞−1−𝑗𝑦𝑗′𝑧𝑓(𝑖,𝑗′))

≥ 𝑝(𝑥𝑞−1−𝑗)−𝑂(𝜅)

≥ 1/𝑞 −𝑂(𝜅).

Now, assume to the contrary that there is a 𝑘 such that 𝑘 ̸= 𝑓(𝑞 − 1 − 𝑗, 𝑗) for
any 𝑗. Thus,

𝑝(𝑧𝑘) ≤ 1−
𝑞−1∑︁
𝑗=0

𝑝(𝑥𝑞−1−𝑗𝑦𝑗𝑧𝑓(𝑞−1−𝑗,𝑗)) ≤ 1−
𝑞−1∑︁
𝑗=0

(1/𝑞 −𝑂(𝜅)) = 𝑂(𝜅).

Picking a sufficiently small 𝜅 > 0 contradicts Theorem 5.3.

5.6 Upper Lower Bounds for Group Tensors

In the previous section, we mainly focused on applying our slice rank tools to various
tensors which have been used in conjunction with the Laser Method to prove bounds
on 𝜔. In this section, we conclude the chapter by showing some implications for both
upper and lower bounds on 𝜔𝑢(𝑇𝐺) when 𝑇𝐺 is a group tensor of a finite group 𝐺.

5.6.1 Tri-Colored Sum-Free Sets

A number of recent works (eg. [BCC+17a, BCC+17b, AW18a]) have explored connec-
tions between lower bounds on matrix multiplication algorithms, and a notion from
extremal combinatorics called a ‘tri-colored sum-free set’. We will make use of them
here in our study of 𝜔𝑢(𝑇𝐺) as well.

Definition 5.3. For a group 𝐺, a tri-colored sum-free set in 𝐺 is a set 𝑆 ⊆ 𝐺3 of
triples of elements of 𝐺 such that:

∙ for all (𝑎, 𝑏, 𝑐) ∈ 𝑆, we have 𝑎𝑏 = 𝑐, and

∙ for all (𝑎1, 𝑏1, 𝑐1), (𝑎2, 𝑏2, 𝑐2), (𝑎3, 𝑏3, 𝑐3) ∈ 𝑆 which are not all the same triple,
we have 𝑎1𝑏2 ̸= 𝑐3.
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In the literature, tri-colored sum-free sets are sometimes also called multiplicative
matchings.

In a recent breakthrough, Ellenberg and Gijswijt [EG17] used techniques intro-
duced by Croot, Lev, and Pach [CLP17] to show that there is a constant 𝑐 < 3 such
that tri-colored sum-free sets in F𝑛

3 have size at most 𝑂(𝑐𝑛). Since then, there has
been an explosion of work in the area, and this result has been extended by Sawin
[Saw18] to hold for all nontrivial groups 𝐺, even nonabelian groups:

Theorem 5.9 ([Saw18, Theorem 1]). Let 𝐺 be any nontrivial finite group. There is
a constant 𝛿𝐺 < 1 such that for any positive integer 𝑛, any tri-colored sum-free set in
𝐺𝑛 has size at most (𝛿𝐺|𝐺|)𝑛.

There are a number of families of groups 𝐺 where even stronger upper bounds
than this are known; we refer the reader to the introduction of [BCC+17b] for an
exposition of these bounds.

We begin with the main connection between group tensors and tri-colored sum-
free sets; this was essentially remarked in [BCC+17a], but we reprove it here for
completeness:

Lemma 5.2. For any finite group 𝐺 and 𝑞 ∈ N, if 𝑇𝐺 ≤𝑧𝑜 ⟨𝑞⟩, then 𝐺 has a tri-colored
sum-free set of size 𝑞.

Proof. Let 𝐷 be the subset of the terms of 𝑇𝐺 so that 𝑇𝐺 ≤𝑧𝑜 𝐷 = ⟨𝑞⟩. Let 𝑆 :=
{(𝑎, 𝑏, 𝑐) ∈ 𝐺3 | 𝑥𝑎𝑦𝑏𝑧𝑐 ∈ 𝐷}. We will show that 𝑆 is a tri-colored sum-free set in
𝐺. First, recall that every 𝑥𝑎𝑦𝑏𝑧𝑐 ∈ 𝑇𝐺 has 𝑎𝑏 = 𝑐, and 𝐷 ⊆ 𝑇𝐺, and so every
(𝑎, 𝑏, 𝑐) ∈ 𝑆 has 𝑎𝑏 = 𝑐 as well. Second, assume to the contrary that there are
(𝑎1, 𝑏1, 𝑐1), (𝑎2, 𝑏2, 𝑐2), (𝑎3, 𝑏3, 𝑐3) ∈ 𝑆, not all the same triple, such that 𝑎1𝑏2 = 𝑐3.
This means that none of 𝑥𝑎1 , 𝑦𝑏2 , or 𝑧𝑐3 were zeroed out to get from 𝑇𝐺 to 𝐷. But,
𝑥𝑎1𝑦𝑏2𝑧𝑐3 ∈ 𝑇𝐺, and so we must have 𝑥𝑎1𝑦𝑏2𝑧𝑐3 ∈ 𝐷. Since 𝐷 is independent, this
means that 𝑥𝑎1𝑦𝑏1𝑧𝑐1 , 𝑥𝑎2𝑦𝑏2𝑧𝑐2 , and 𝑥𝑎3𝑦𝑏3𝑧𝑐3 must all be the same triple, contradicting
how we picked them.

In fact, a more technical proof can strengthen Lemma 5.2 to work for degenerations
instead of just zeroing outs:

Lemma 5.3 ([BCC+17a]). For any finite group 𝐺 and 𝑞 ∈ N, if 𝑇𝐺 E ⟨𝑞⟩, then for
𝑛 ∈ N, 𝐺𝑛 has a tri-colored sum-free set of size 𝑞𝑛−𝑜(𝑛).

We can use this to give lower bounds on 𝜔𝑢(𝑇𝐺) for any finite group 𝐺:

Corollary 5.5. For any tensor 𝑇 and any nontrivial finite group 𝐺 such that 𝑇 E 𝑇𝐺,
we have 𝑆(𝑇 ) < |𝐺|.

Proof. Since 𝑇 E 𝑇𝐺, we have 𝑆(𝑇 ) ≤ 𝑆(𝑇𝐺). Letting 𝛿𝐺 < 1 be the constant from
Theorem 5.9 for 𝐺, we know that for any positive integer 𝑛, any tri-colored sum-
free set in 𝐺𝑛 has size at most (𝛿𝐺|𝐺|)𝑛. Hence, by Lemma 5.3, we have 𝑆(𝑇⊗𝑛

𝐺 ) ≤
(𝛿𝐺|𝐺|)𝑛−𝑜(𝑛). It follows that 𝑆(𝑇𝐺) ≤ 𝛿𝐺|𝐺| < |𝐺|, as desired.
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Theorem 5.10. For any finite group 𝐺, we have 𝜔𝑔(𝑇𝐺) > 2.

Proof. Simply pick 𝑇 = 𝑇𝐺 in Corollary 5.5, which is known to have �̃�(𝑇𝐺) ≥ |𝐺|
(see Subsection 4.6.2), combined with Theorem 5.1.

This shows that no fixed group tensor 𝑇𝐺 can be used to show 𝜔 = 2 using the
Universal Method. That said, it does not rule out showing 𝜔 = 2 by using a sequence
𝐺1, 𝐺2, . . . of groups such that lim𝑖→∞ 𝜔𝑔(𝑇𝐺𝑖

) = 2. Prior work has already made a
similar remark for showing 𝜔 = 2 by finding large ‘simultaneous triple product prop-
erty’ constructions in 𝐺 via the Group-theoretic Method, and some natural sequences
of groups have already been ruled out [BCC+17b].

5.6.2 Asymptotic Slice Rank and Tri-Colored Sum-Free Set
Constructions for All Finite Groups

One of the key components of our lower bounding framework is Proposition 5.3,
in which we showed that matrix multiplication tensors have degenerations to large
independent tensors. In this subsection, we will instead use Proposition 5.3 in a
different way: to show that some other tensors of interest also have degenerations to
nontrivially-large independent tensors. In particular, we will show this for the group
tensor 𝑇𝐺 of any finite group 𝐺, which will imply a nontrivially-large tri-colored sum-
free set in 𝐺𝑛 for sufficiently large 𝑛. We start with the main additional idea needed
for this application:

Theorem 5.11. For every finite group 𝐺 of order |𝐺| = 𝑞, there is a monomial
degeneration 𝑇𝐺 into a tensor 𝑇 which is a generalized Coppersmith-Winograd tensor
with parameter 𝑞 − 2.

Proof. Let 1 ∈ 𝐺 be the identity, and let 𝑔 ∈ 𝐺 be any other element. We will give
three maps maps 𝛼 : 𝑋𝐺 → Z, 𝛽 : 𝑌𝐺 → Z, and 𝛾 : 𝑍𝐺 → Z such that for any 𝑎, 𝑏 ∈ 𝐺
we have 𝛼(𝑥𝑎) + 𝛽(𝑦𝑏) + 𝛾(𝑧𝑎𝑏) ≥ 0, and then define our monomial degeneration by
the map 𝑚 : 𝑋𝐺 ∪ 𝑌𝐺 ∪ 𝑍𝐺 → 𝑀𝑜𝑛 given by 𝑚(𝑥𝑎) = 𝜆𝛼(𝑥𝑎)+𝑑, 𝑚(𝑦𝑏) = 𝜆𝛽(𝑦𝑏)+𝑑,
and 𝑚(𝑧𝑐) = 𝜆𝛾(𝑧𝑐)+𝑑 for any 𝑎, 𝑏, 𝑐 ∈ 𝐺 and a sufficiently large constant 𝑑 ∈ N, so
that 𝑥𝑎𝑦𝑏𝑧𝑎𝑏 will remain in the result of the monomial degeneration if and only if
𝛼(𝑥𝑎) + 𝛽(𝑦𝑏) + 𝛾(𝑧𝑎𝑏) = 0. The maps are given as follows:

∙ 𝛼(𝑥1) = 𝛽(𝑦1) = 𝛾(𝑧1) = 0,

∙ 𝛼(𝑥𝑔) = 𝛽(𝑦𝑔) = −𝛾(𝑧𝑔) = 2, and

∙ 𝛼(𝑥ℎ) = 𝛽(𝑦ℎ) = −𝛾(𝑧ℎ) = 1 for all ℎ ∈ 𝐺 ∖ {1, 𝑔}.

Let 𝑇 be the monomial degeneration of 𝑇𝐺 defined by 𝛼, 𝛽, 𝛾. Define the permu-
tation 𝜎 : 𝐺 ∖ {1, 𝑔} → 𝐺 ∖ {1, 𝑔} which sends ℎ ∈ 𝐺 to 𝜎(ℎ) := ℎ−1𝑔. We can see
that:

∙ 𝑥1𝑦1𝑧1 ∈ 𝑇 since 𝛼(𝑥1) = 𝛽(𝑦1) = 𝛾(𝑧1) = 0.
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∙ 𝑥1𝑦ℎ𝑧ℎ ∈ 𝑇 for all ℎ ∈ 𝐺 ∖ {1} (including ℎ = 𝑔), since 𝛼(𝑥1) = 0 while
𝛽(𝑦ℎ) = −𝛾(𝑧ℎ) = 1.

∙ 𝑥ℎ𝑦1𝑧ℎ ∈ 𝑇 for all ℎ ∈ 𝐺 ∖ {1} similarly.

∙ 𝑥ℎ𝑦𝜎(ℎ)𝑧𝑔 ∈ 𝑇 for all ℎ ∈ 𝐺∖{1, 𝑔}, since 𝛼(𝑥ℎ) = 𝛽(𝑦𝜎(ℎ)) = 1, while 𝛾(𝑧𝑔) = −2.

Meanwhile,

∙ 𝑥ℎ1𝑦ℎ2𝑧ℎ3 /∈ 𝑇 for any ℎ1, ℎ2, ℎ3 ∈ 𝐺 ∖ {1, 𝑔} with ℎ1ℎ2 = ℎ3, since 𝛼(ℎ1) =
𝛽(ℎ2) = 1 and 𝛾(ℎ3) = −1, so the three sum to 1.

∙ 𝑥ℎ𝑦ℎ−1𝑧1 /∈ 𝑇 for any ℎ ∈ 𝐺 ∖ {1, 𝑔} since 𝛼(𝑥ℎ) = 𝛽(𝑦ℎ−1) = 1 while 𝛾(𝑧1) = 0,
so the three sum to 2.

∙ 𝑥𝑔𝑦ℎ1𝑧ℎ2 /∈ 𝑇 for any ℎ1, ℎ2 ∈ 𝐺 ∖ {1, 𝑔} with 𝑔ℎ1 = ℎ2, since 𝛼(𝑥𝑔) = 2,
𝛽(𝑦ℎ1) = 1, and 𝛾(𝑧ℎ2) = −1, so the three sum to 2.

∙ 𝑥ℎ1𝑦𝑔𝑧ℎ2 /∈ 𝑇 for any ℎ1, ℎ2 ∈ 𝐺 ∖ {1, 𝑔} with 𝑔ℎ1 = ℎ2 similarly.

∙ 𝑥𝑔𝑦𝑔−1𝑧1 /∈ 𝑇 since 𝛼(𝑥𝑔) = 2, 𝛽(𝑦𝑔−1) = 1, and 𝛾(𝑧1) = 0, so the three sum to
3.

∙ 𝑥𝑔−1𝑦𝑔𝑧1 /∈ 𝑇 similarly.

∙ 𝑥𝑔𝑦𝑔𝑧𝑔2 /∈ 𝑇 since 𝛼(𝑥𝑔) = 𝛽(𝑦𝑔) = 2, and definitely 𝛾(𝑧𝑔2) ≥ −2, so the three
sum to at least 2.

This covers all the entries of 𝑇𝐺, showing that we have defined a valid monomial
degeneration to

𝑇 = 𝑥1𝑦1𝑧1 + 𝑥1𝑦𝑔𝑧𝑔 + 𝑥𝑔𝑦1𝑧𝑔 +
∑︁

ℎ∈𝐺∖{1,𝑔}

(𝑥1𝑦ℎ𝑧ℎ + 𝑥ℎ𝑦1𝑧ℎ + 𝑥ℎ𝑦𝜎(ℎ)𝑧𝑔).

This is indeed a generalized Coppersmith-Winograd tensor with parameter |𝐺 ∖
{1, 𝑔}| = 𝑞 − 2, as desired.

An immediate consequence of this monomial degeneration is that applying the
Solar, Galactic or Universal method on 𝑇𝐺 for any finite group 𝐺 with �̃�(𝑇𝐺) = |𝐺|
yields the same upper bounds on 𝜔 as the best known analysis of 𝐶𝑊|𝐺|−2. Picking
an appropriate group 𝐺 where group operations are known to be efficient in practice
could help lead to a more practical matrix multiplication algorithm.

Next, we will use the fact that matrix multiplication tensors, and hence
Coppersmith-Winograd tensors, have large asymptotic slice rank, to show that for
any finite group 𝐺, 𝑇𝐺 also has a relatively large slice rank, and hence that 𝐺𝑛 has
relatively large tri-colored sum-free sets for large enough 𝑛.

Theorem 5.12. Define 𝑓 : N→ R by 𝑓(𝑞) = log𝑞

(︁
4(𝑞+2)3

27

)︁
. For every positive inte-

ger 𝑞, and every tensor 𝐶𝑊𝑞,𝜎 which is a generalized Coppersmith-Winograd tensor
of parameter 𝑞, we have 𝑆(𝐶𝑊𝑞,𝜎) ≥ (𝑞 + 2)2/𝑓(𝑞).
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Remark 5.1. For 𝑞 ≥ 3, we have 𝑓(𝑞) < 3, and so 𝑆(𝐶𝑊𝑞,𝜎) ≥ (𝑞 + 2)2/3.

Remark 5.2. In the proof of Theorem 5.12, we use a simpler lower bound on 𝜔𝑠(𝐶𝑊𝑞)
than is known, for ease of reading; it is, of course, possible to use the better known
upper bounds on 𝜔𝑠(𝐶𝑊𝑞) from [CW90, Wil12, LG14] in the proof and improve the
result.

Proof of Theorem 5.12. Define 𝑓 : N → R by 𝑓(𝑞) = log𝑞

(︁
4(𝑞+2)3

27

)︁
. In [CW90,

Section 6], Coppersmith and Winograd show that 𝜔𝑠(𝐶𝑊𝑞,𝜎) ≥ 𝑓(𝑞). Hence, by
Theorem 5.1, we get

𝑆(𝐶𝑊𝑞,𝜎) ≥ �̃�(𝐶𝑊𝑞,𝜎)2/𝑓(𝑞) ≥ (𝑞 + 2)2/𝑓(𝑞).

Theorem 5.13. For every (not necessarily abelian) finite group 𝐺, there is a constant
𝑐|𝐺| > 2/3, depending only on |𝐺|, such that 𝑆(𝑇𝐺) ≥ |𝐺|𝑐|𝐺|. In particular, for 𝑛 ∈ N,
𝐺𝑛 has a tri-colored sum-free set of size at least |𝐺|𝑐|𝐺|𝑛−𝑜(𝑛).

Proof. The only finite groups 𝐺 of order |𝐺| < 5 are 𝐶1, 𝐶2, 𝐶3, 𝐶4, and 𝐶2
2 . For each

of these groups, the result is shown, eg. by [KSS18]. For |𝐺| ≥ 5, we know from
Theorem 5.11 that 𝑇𝐺 has a monomial degeneration to a generalized Coppersmith-
Winograd tensor of parameter |𝐺|−2, and so the result follows by Theorem 5.12.
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Part II

Probabilistic Polynomials and
Hamming Nearest Neighbors

81



82



Chapter 6

Background and Overview

The polynomial method is a powerful tool in circuit complexity. The idea of the
method is to transform all circuits of some class into “simple” polynomials which
represent the circuit in some way. If the polynomial is always sufficiently simple (e.g.
has low degree), and one can prove that a certain Boolean function 𝑓 cannot be
represented so simply, one concludes that the circuit class is unable to compute 𝑓 .

Recently, these tools have found surprising uses in algorithm design. If a subprob-
lem of an algorithmic problem can be modeled by a simple circuit, and that circuit
can be transformed into a “simple” polynomial (or “simple” distribution on polyno-
mials), then fast algebraic algorithms can be applied to evaluate or manipulate the
polynomial quickly. This approach has led to advances on problems such as All-
Pairs Shortest Paths [Wil14a], Orthogonal Vectors [WY14, AWY15] and Constraint
Satisfaction [Wil14d].

In these applications, the key step is to randomly convert simple circuits into
probabilistic polynomials. If 𝑓 is a Boolean function on 𝑛 variables, and 𝑅 is a
commutative ring, a probabilistic polynomial over 𝑅 for 𝑓 with error 1/𝑠 and degree
𝑑 is a distribution 𝒟 of degree-𝑑 polynomials over 𝑅 such that for all 𝑥 ∈ {0, 1}𝑛,
Pr𝑝∼𝒟[𝑝(𝑥) = 𝑓(𝑥)] ≥ 1− 1/𝑠. Razborov [Raz87] and Smolensky [Smo87] introduced
the notion of a probabilistic polynomial. They showed that AND, OR, and XOR gates
of unbounded fan-in have simple constant degree probabilistic polynomials, and hence
that any low-depth AC0[⊕] circuit consisting of these gates can be transformed into
a low degree probabilistic polynomial. All the prior work on polynomial method
algorithms uses this transformation.

In this Part, we develop new probabilistic polynomial constructions in order to
solve a variety of algorithmic problems. We focus especially on polynomial repre-
sentations of threshold functions. The threshold function TH𝜃 determines whether
at least a 𝜃 fraction of its input bits are 1s. Threshold functions are among the
simplest Boolean functions that do not have constant degree probabilistic polyno-
mials: Razborov and Smolensky showed that the MAJORITY function (a special
case of a threshold function) requires degree Ω(

√
𝑛 log 𝑠). Nonetheless, as we will

see throughout this Part, there are many important problems which can be re-
duced to evaluating circuits involving threshold gates on many inputs, and so fur-
ther study of polynomial representations of threshold functions is warranted. In-
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deed, threshold functions have been extensively studied in theoretical computer
science for many years, and there are numerous applications of linear and poly-
nomial threshold functions to complexity and learning theory (a sample includes
[BRS91, BS92, ABFR94, Bei95, KS01, OS10, She14]).

6.1 Our Results

6.1.1 Polynomial Constructions

We begin in Chapter 7 by giving a number of new polynomial constructions. We con-
sider three different notions of polynomials representing TH𝜃. Each achieves different
trade-offs between polynomial degree, the randomness required, and how accurately
the polynomial represents TH𝜃. One key type of circuit which will recur in most of our
applications is an OR of many thresholds; each of the polynomials we construct can
be used to represent such a circuit by summing up to 𝑠/3 copies of the polynomial,
one for each threshold gate (where 1/𝑠 is the error parameter of the construction).
Each construction leads to improved algorithms in our applications.

Probabilistic Polynomials. We begin with probabilistic polynomials. Razborov
and Smolensky showed over 30 year ago that TH𝜃 on 𝑛 inputs with error 1/𝑠 requires
degree Ω(

√
𝑛 log 𝑠). We show that their lower bound is tight by giving a matching

construction. Our probabilistic polynomial construction is efficiently samplable using
only polylog(𝑛𝑠) random bits, which will allow us to use it to design deterministic
algorithms in some cases.

Theorem 6.1. For any 0 ≤ 𝜃 ≤ 1, there is a probabilistic polynomial for the function
TH𝜃 of degree 𝑂(

√
𝑛 log 𝑠) on 𝑛 bits with error 1/𝑠 over any commutative ring 𝑅 that

can be efficiently sampled using only 𝑂(log 𝑛 log(𝑛𝑠)) random bits.

Polynomial Threshold Functions. Second, we consider deterministic Polynomial
Threshold Functions (PTFs). A PTF for a Boolean function 𝑓 is a polynomial (not
a distribution on polynomials) 𝑝 : {0, 1}𝑛 → R such that 𝑝(𝑥) is smaller than a
fixed value when 𝑓(𝑥) = 0, and 𝑝(𝑥) is larger than the value when 𝑓(𝑥) = 1. In
our applications, we seek PTFs with “good threshold behavior”, such that |𝑝(𝑥)| ≤ 1
when 𝑓(𝑥) = 0, and 𝑝(𝑥) is very large otherwise. We can achieve almost the same
degree as for a probabilistic polynomial, and even better degree when we focus on
𝜀-approximate thresholds rather than exact thresholds:

Theorem 6.2. We can construct a polynomial 𝑃𝑠,𝑡,𝜀 : R→ R of degree 𝑂(
√︀

1/𝜀 log 𝑠),
such that

∙ if 𝑥 ∈ {0, 1, . . . , 𝑡}, then |𝑃𝑠,𝑡,𝜀(𝑥)| ≤ 1;

∙ if 𝑥 ∈ (𝑡, (1 + 𝜀)𝑡), then 𝑃𝑠,𝑡,𝜀(𝑥) > 1;

∙ if 𝑥 ≥ (1 + 𝜀)𝑡, then 𝑃𝑠,𝑡,𝜀(𝑥) ≥ 𝑠.
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For the “exact” setting with 𝜀 = 1/𝑡, we can alternatively bound the degree by
𝑂(
√︀
𝑡 log(𝑠𝑡)).

By summing multiple copies of the polynomial from Theorem 6.2, we immediately
obtain a PTF with the same degree for the OR of 𝑂(𝑠) threshold functions (needed in
our applications). This theorem follows directly from known extremal properties of
Chebyshev polynomials, as well as the lesser known discrete Chebyshev polynomials.
Chebyshev polynomials are well-known to yield good approximate polynomials for
computing certain Boolean functions over the reals [NS94, Pat92, KS01, She13, Val15]
(see Section 6.2 below for more background).
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Figure 6-1: A plot of the sixth Chebyshev polynomial, 𝑇6(𝑥) = 32𝑥6−48𝑥4 +18𝑥−1.
Chebyshev polynomials have the property that, on the interval [−1, 1], they always
output a value from [−1, 1]. Among all polynomials of a fixed degree with this prop-
erty, the Chebyshev polynomial takes on the largest possible value at all inputs outside
[−1, 1]. This makes it useful for applications like Theorem 6.2, where we want a large
separation between inputs on either side of a threshold.

Probabilistic PTFs. Third, we introduce a new (natural) notion of a probabilistic
PTF for a Boolean function 𝑓 . This is a distribution on PTFs, where for each input 𝑥,
a PTF drawn from the distribution is highly likely to agree with 𝑓 on 𝑥. Combining
the techniques from probabilistic polynomials for TH𝜃 and the deterministic PTFs in
a simple way, we construct a probabilistic PTF with good threshold behavior whose
degree is lower than both the deterministic PTF and the degree bounds attainable
by probabilistic polynomials (surprisingly breaking the “square-root barrier” of the
Razborov-Smolensky lower bound):

Theorem 6.3. We can construct a distribution ℒ𝑛,𝑠,𝑡,𝜀 on polynomials 𝐿𝑛,𝑠,𝑡,𝜀 :
{0, 1}𝑛 → R of degree 𝑂((1/𝜀)1/3 log 𝑠), such that for every 𝑥 ∈ {0, 1}𝑛, when we
draw a random 𝐿𝑛,𝑠,𝑡,𝜀 ∼ ℒ𝑛,𝑠,𝑡,𝜀:
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∙ if
∑︀𝑛

𝑖=1 𝑥𝑖 ≤ 𝑡, then |𝐿𝑛,𝑠,𝑡,𝜀(𝑥1, . . . , 𝑥𝑛)| ≤ 1 with probability at least 1− 1/𝑠;

∙ if
∑︀𝑛

𝑖=1 𝑥𝑖 ∈ (𝑡, 𝑡 + 𝜀𝑛), then 𝐿𝑛,𝑠,𝑡,𝜀(𝑥1, . . . , 𝑥𝑛) > 1 with probability at least
1− 1/𝑠;

∙ if
∑︀𝑛

𝑖=1 𝑥𝑖 ≥ 𝑡+𝜀𝑛, then 𝐿𝑛,𝑠,𝑡,𝜀(𝑥1, . . . , 𝑥𝑛) ≥ 𝑠 with probability at least 1−1/𝑠.

For the “exact” setting with 𝜀 = 1/𝑛, we can alternatively bound the degree by
𝑂(𝑛1/3 log2/3(𝑛𝑠)).

The PTFs of Theorem 6.3 can be sampled using only 𝑂(log(𝑛) · log(𝑛𝑠)) random
bits as well; their lower degree will allow us to design faster randomized algorithms for
a variety of problems. For emphasis, we will sometimes refer to PTFs as deterministic
PTFs to distinguish them from probabilistic PTFs.

6.1.2 Algorithmic Applications

Next, by combining these polynomials for TH𝜃 with the aforementioned polynomial
method in algorithm design (and in particular, making use of fast rectangular matrix
multiplication algorithms to quickly evaluate polynomials on many inputs), we design
new faster algorithms for many different problems in Chapter 8.

Batch Hamming Nearest Neighbor Search

Recall the Hamming nearest neighbor problem (HNN): given a set 𝐷 of 𝑛 database
points in the 𝑑-dimensional hypercube {0, 1}𝑑, we wish to preprocess 𝐷 to support
queries of the form 𝑞 ∈ {0, 1}𝑑, where a query answer is a point 𝑢 ∈ 𝐷 that differs
from 𝑞 in a minimum number of coordinates. Minsky and Papert [MP69, Chapter
12.7] called this the “Best Match” problem, and it has been widely studied since.
Like many situations where one wants to find points that are “most similar” to query
points, HNN is fundamental to modern computing, especially in search and error
correction [Ind04]. However, known exact solutions to the problem require a data
structure of 2Ω(𝑑) size (storing all possible queries) or query time Ω(𝑛/poly(log 𝑛))
(trying nearly all the points in the database). This is one of many examples of the
curse of dimensionality phenomenon in search, with corresponding data structure
lower bounds. For instance, Barkol and Rabani [BR02] show a size-query tradeoff for
HNN in 𝑑 dimensions in the cell-probe model: if one uses 𝑠 cells of size 𝑏 to store the
database and probes at most 𝑡 cells in a query, then either 𝑠 = 2Ω(𝑑/𝑡) or 𝑏 = 𝑛Ω(1)/𝑡.

During the late 90’s, a new direction opened in the search for better nearest
neighbor algorithms. The driving intuition was that it may be easier to find and
generally good enough to have approximate solutions: points with distance within (1+
𝜀) of the optimum. Utilizing novel hashing and dimensionality reduction techniques,
this beautiful line of work has had enormous impact [Kle97, IM98, KOR00, Pan06,
AI06, Val15, AINR14, AR15]. Still, when turning to approximations, the exponential-
in-𝑑 dependence generally turns into an exponential-in-1/𝜀 dependence, leading to a
“curse of approximation” [Pat08], with lower bounds matching this intuition [CCGL99,
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CR04, AIP06]. For example, Andoni, Indyk, and Patrascu [AIP06] prove that any
data structure for (1+𝜀)-approximate HNN using 𝑂(1) probes requires 𝑛Ω(1/𝜀2) space.

In our first application, we design new algorithms for the natural off-line version
of HNN. We design faster algorithms for both the exact and the approximate version,
in the Hamming metric as well as in other metrics like ℓ1 and the Jaccard distance.

Offline Hamming Nearest Neighbor Search. We first revisit exact nearest
neighbors in the Hamming metric. We study the natural off-line problem of an-
swering 𝑛 Hamming nearest neighbor queries at once, on a database of size 𝑛. We
call this the Batch Hamming Nearest Neighbor problem (BHNN). Here the
aforementioned data structure lower bounds no longer apply—there is no informa-
tion bottleneck. Nevertheless, known algorithms for BHNN still run in either about
𝑛2𝑑Ω(1) time (try all pairs) [GL01, MKZ09] or about 𝑛2Ω(𝑑) time (build a table of all
possible query answers). Using our probabilistic PTFs, we improve over both these
bounds for log 𝑛 ≤ 𝑑≪ log3 𝑛/ log5 log 𝑛.

Theorem 6.4. Given 𝑛 red and 𝑛 blue points in {0, 1}𝑑 for 𝑑 = 𝑐 log 𝑛 ≪
log3 𝑛/ log5 log 𝑛, we can find an (exact) Hamming nearest/farthest blue neighbor for
every red point in randomized time 𝑛2−1/𝑂(

√
𝑐 log3/2 𝑐).

Using the same ideas, we are also able to derandomize our algorithm, to achieve
deterministic time 𝑛2−1/𝑂(𝑐 log2 𝑐). When 𝑑 = 𝑐 log 𝑛 for constant 𝑐, these algorithms
both have “truly subquadratic” running times. We then apply simple reductions to
achieve similar running times for finding closest pairs in ℓ1 for vectors with small
integer entries, and pairs with maximum inner product or Jaccard coefficient, as well
as Bichromatic Min Inner Product: given an integer 𝑘 and a collection of red
and blue Boolean vectors, determine if there is a red and blue vector with inner
product at most 𝑘.

It is important to keep in mind that sufficiently fast off-line Hamming closest
pair algorithms would yield a breakthrough in satisfiability algorithms, so there is a
potential limit. Indeed, we show:

Theorem 6.5. Suppose there is 𝜀 > 0 such that for all constant 𝑐, Bichromatic
Hamming Closest Pair can be solved in 2𝑜(𝑑) · 𝑛2−𝜀 time on a set of 𝑛 points in
{0, 1}𝑐 log𝑛. Then the Strong Exponential Time Hypothesis (SETH) is false.

The proof is actually a reduction from the (harder-looking) Orthogonal Vec-
tors problem, where it is well-known that 𝑛2−𝜀 time would refute SETH [Wil05].
Our algorithm for Theorem 6.4 shows that for all 𝑐, there is a 𝛿 > 0 such that Of-
fline Hamming Nearest Neighbor search in dimension 𝑑 = 𝑐 log 𝑛 takes 𝑂(𝑛2−𝛿) time.
Theorem 6.5 says that showing that there is a universal 𝛿 > 0 that works for all 𝑐
would disprove the Strong Exponential Time Hypothesis.

Offline Approximate Nearest Neighbor Search. The problem of finding high-
dimensional approximate nearest neighbors has received even more attention than the
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exact variant. Locality-sensitive hashing yields data structures that can find (1 + 𝜀)-
factor approximate nearest neighbors to any query point in ̃︀𝑂(𝑑𝑛1−Ω(𝜀)) (randomized)
time after preprocessing in ̃︀𝑂(𝑑𝑛 + 𝑛2−Ω(𝜀)) time and space, for not only Hamming
space but also ℓ1 and ℓ2 space [HIM12, AI06]. Thus, a batch of 𝑛 queries can be
answered in ̃︀𝑂(𝑑𝑛2−Ω(𝜀)) randomized time. Exciting recent work on locality-sensitive
hashing [AINR14, AR15] has improved the constant factor in the Ω(𝜀) bound, but not
the growth rate in 𝜀. In 2012, Gregory Valiant [Val15] reported a surprising algorithm
running in ̃︀𝑂(𝑑𝑛 + 𝑛2−Ω(

√
𝜀)) randomized time for the offline version of the problem

in ℓ2. We obtain a still faster algorithm for the offline problem, with
√
𝜀 improved to

about 𝜀1/3:

Theorem 6.6. Given 𝑛 red and 𝑛 blue points in [𝑈 ]𝑑 and 𝜀 ≫ log6 log𝑛
log3 𝑛

, we can find
a (1 + 𝜀)-approximate ℓ1 or ℓ2 nearest/farthest blue neighbor for each red point in
(𝑑𝑛+ 𝑛2−Ω(𝜀1/3/ log(1/𝜀))) · poly(log(𝑛𝑈)) randomized time.

Valiant’s algorithm, like the previous polynomial method algorithms, relied on
fast matrix multiplication. It also used Chebyshev polynomials but in a seemingly
more complicated way. Our new probabilistic PTF construction is inspired by our
attempt to unify Valiant’s approach with the probabilistic method, which leads to
an improvement of Valiant’s algorithm. (We also almost succeed in derandomizing
Valiant’s 𝑛2−Ω̃(

√
𝜀) result in the Hamming case, except for an initial dimension reduc-

tion step; see Remark 8.3 in Section 8.3.)
Numerous applications to high-dimensional computational geometry follow; for

example, we can approximate the diameter or Euclidean minimum spanning tree of
a given set of 𝑛 points in roughly the same running time.

The Light Bulb Problem. The last problem related to nearest neighbor search we
study is the Light Bulb Problem, introduced by Leslie Valiant in 1988 [Val88]: Given
as input a set 𝑆 of 𝑛 vectors from {−1, 1}𝑑, which are all independently and uniformly
random except for two planted vectors (the correlated pair) which have inner product
at least 𝜌 · 𝑑 for some 0 < 𝜌 ≤ 1, the goal is to find the correlated pair. This is a
basic formulation of the problem of finding correlated variables in data analysis, and
the best known algorithms for more general problems like finding correlations on the
Euclidean sphere [Cha02] and learning sparse parities with noise [Val15, Appendix
A] come from reductions to the Light Bulb problem.

The dimension 𝑑 of the vectors is called the sample complexity of the problem,
since it corresponds to the number of data points which must be gathered about
the variables in order to determine which are correlated. When 𝑑 is too small (for
instance, 𝑑 < log(𝑛)), then the problem is information-theoretically impossible. By
standard concentration inequalities, there is a constant 𝑐 > 1 such that, whenever
𝑑 ≥ 𝑐 log 𝑛, the correlated pair is the closest pair of vectors with high probability. We
would like to design algorithms for this 𝑑 = 𝑂(log 𝑛) regime.

It is not hard to see that the Light Bulb Problem is a special case of the
(1 + 𝜀)−approximate Hamming nearest neighbor problem which we solved in The-
orem 6.6 above. However, whereas before we were concentrating on the case when

88



𝜀 is very small, the Light Bulb problem can be seen as the case when 𝜀 is instead
a large constant. In other words, the result in Theorem 6.6 was optimizing for a
different parameter than is necessary for the Light Bulb problem. Using techniques
like Locality-Sensitive Hashing [IM98, PRR95, Dub10], one can solve the Light Bulb
Problem in time 𝑛2−𝑂(𝜌). For constant 𝜌 > 0, this gives a truly subquadratic running
time, but the running time become quadratic as 𝜌→ 0.

In a breakthrough result, G. Valiant [Val15] gave an algorithm solving the Light
Bulb Problem in time 𝑂(𝑛(5−𝜔)/(4−𝜔)+𝜀 + 𝑛𝑑) < 𝑂(𝑛1.615 + 𝑛𝑑), where 𝜔 < 2.373 is
the exponent of matrix multiplication, for any constant 𝜌 > 0, no matter how small.
Thereafter, Karppa et al. [KKK16] gave an improved algorithm with a running
time of 𝑂(𝑛2𝜔/3+𝜀 + 𝑛𝑑) < 𝑂(𝑛1.582 + 𝑛𝑑). Both of these algorithms work when
the sample complexity 𝑑 matches, up to a constant, the information-theoretically
necessary 𝑑 = Θ(log 𝑛).

Here, we give a new randomized algorithm with a simple analysis which matches
the best known running time 𝑂(𝑛2𝜔/3+𝜀) and sample complexity 𝑑 = Θ(log 𝑛). Pre-
vious algorithms for the problem made use of sophisticated random sampling tech-
niques, but we show that these are unnecessary when approaching the problem using
the polynomial method instead.

By leveraging our simpler analysis, we also give new faster deterministic algorithms
for the problem. However, as the inputs to the Light Bulb Problem come from a
random distribution, we need to be careful about what a deterministic algorithm
means. We give algorithms in two different settings:

∙ an algorithm running in the same time 𝑂(𝑛2𝜔/3+𝜀) < 𝑂(𝑛1.582) for sample com-
plexity 𝑑 = Θ(log 𝑛) which is correct on almost all instances (i.e. the probability
of drawing an instance where the algorithm fails is 1/poly(𝑛)), and

∙ an algorithm running in time 𝑂(𝑛4𝜔/5+𝜀) < 𝑂(𝑛1.899) for sample complexity
𝑑 = Θ(log 𝑛) which must correctly solve every instance, given the promise that
the pairs of vectors other than the correlated pair are not much more correlated
than one would expect random vectors to be.

See Subsection 8.12 for more details. In both of these settings, the previous best
known running time [KKKÓC16] was at best 𝑂(𝑛1.996).

Satisfiability Algorithms

Next, we apply our polynomials to design faster satisfiability algorithms in a number
of different settings which involve threshold functions and counting.

MAX-SAT. We begin with MAX-SAT, the problem of finding an assignment that
satisfies the maximum number of clauses in a given CNF formula with 𝑛 variables.
In the sparse case when the number of clauses is 𝑐𝑛, a series of papers have given
faster exact algorithms, for example, achieving 2𝑛−𝑛/𝑂(𝑐 log 𝑐) time by Dantsin and
Wolpert [DW06a], 2𝑛−𝑛/𝑂(𝑐 log 𝑐)2/3 time by Sakai et al. [SSTT15a], and 2𝑛−𝑛/𝑂(

√
𝑐)

time by Chen and Santhanam [CS15]. Using the polynomial method and our new
probabilistic PTF construction, we obtain the following improved result:
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Theorem 6.7. Given a CNF formula with 𝑛 variables and 𝑐𝑛≪ 𝑛4/ log10 𝑛 clauses,
we can find an assignment that satisfies the maximum number of clauses in random-
ized 2𝑛−𝑛/𝑂(𝑐1/3 log7/3 𝑐) time.

For general dense instances, the problem becomes tougher. Williams [Wil05]
gave an 𝑂(20.792𝑛)-time algorithm for MAX-2-SAT, but an 𝑂(2(1−𝛿)𝑛)-time algorithm
for MAX-3-SAT (for a universal 𝛿 > 0) has remained open; currently the best re-
ported time bound [SSTT15b] is 2𝑛−Ω(𝑛/ log𝑛)1/3 , which can be slightly improved to
2𝑛−Ω(

√
𝑛/ log𝑛) with more care. We make new progress on not only MAX-3-SAT but

also MAX-4-SAT:

Theorem 6.8. Given a weighted 4-CNF formula 𝐹 with 𝑛 variables with positive
integer weights bounded by poly(𝑛), we can find an assignment that maximizes the
total weight of clauses satisfied in 𝐹 , in randomized 2𝑛−𝑛/𝑂(log2 𝑛 log2 log𝑛) time. In
the sparse case when the clauses have total weight 𝑐𝑛, the time bound improves to
2𝑛−𝑛/𝑂(log2 𝑐 log2 log 𝑐).

LTF-LTF Circuit SAT Algorithms and Lower Bounds. Using our small sam-
ple space for probabilistic polynomials for threshold functions (Theorem 6.1), we con-
struct a new circuit satisfiability algorithm for circuits with linear threshold functions
(LTFs) which improves over several prior results. Let AC0[𝑑,𝑚]∘LTF∘LTF[𝑆1, 𝑆2, 𝑆3]
be the class of circuits with a layer of 𝑆3 LTFs at the bottom layer (nearest the in-
puts), a layer of 𝑆2 LTFs above the bottom layer, and a size-𝑆1 AC0[𝑚] circuit of
depth 𝑑 above the two LTF layers.1

Theorem 6.9. For every integer 𝑑 > 0, 𝑚 > 1, and 𝛿 > 0, there is an 𝜀 > 0 and an
algorithm for satisfiability of AC0[𝑑,𝑚] ∘ LTF ∘ LTF[2𝑛𝜀

, 2𝑛𝜀
, 𝑛2−𝛿] circuits that runs in

deterministic 2𝑛−𝑛𝜀 time.

Williams [Wil14b] gave a comparable SAT algorithm for ACC0 ∘ LTF circuits of
2𝑛𝜀 size, where 𝜀 > 0 is sufficiently small.2 Theorem 6.9 strictly generalizes the
previous algorithm, allowing another layer of 𝑛2−𝜀 linear threshold functions below the
existing LTF layer. Theorem 6.9 also trivially implies deterministic SAT algorithms
for LTF∘LTF circuits of up to 𝑛2−𝑜(1) gates, improving over the recent SAT algorithms
of Chen, Santhanam, and Srinivasan [CSS16] which only work for 𝑛1+𝜀-wire circuits
for 𝜀≪ 1, and the SAT algorithms of Impagliazzo, Paturi, and Schneider [IPS13].

Applying the known connection between circuit satisfiability algorithms and cir-
cuit lower bounds for ENP problems [Wil13, Wil14c, JMV15], the following is imme-
diate:

Corollary 6.1. For every 𝑑 > 0, 𝑚 > 1, and 𝛿 ∈ (0, 1), there is an 𝜀 > 0 such that the
class ENP does not have non-uniform circuits in AC0[𝑑,𝑚] ∘ LTF ∘ LTF[2𝑛𝜀

, 2𝑛𝜀
, 𝑛2−𝛿].

1Recall that for an integer 𝑚 ≥ 2, AC0[𝑚] refers to constant-depth unbounded fan-in circuits
over the basis {AND,OR,MOD𝑚}, where MOD𝑚 outputs 1 iff the sum of its input bits is divisible
by 𝑚.

2Recall ACC0 is the infinite union of AC0[𝑚] for all integers 𝑚 ≥ 2.
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In particular, for every 𝜀 > 0, ENP does not have ACC0 ∘ LTF ∘ LTF circuits where the
ACC0 ∘ LTF subcircuit has 2𝑛𝑜(1) size and the bottom LTF layer has 𝑛2−𝜀 gates.

Most notably, Corollary 6.1 proves lower bounds with 𝑛2−𝜀 LTFs on the bottom
layer and subexponentially many LTFs on the second layer. This improves upon
recent LTF ∘ LTF gate lower bounds of Kane and Williams [KW16], at the cost of
raising the complexity of the hard function from TC0

3 to ENP. Suguru Tamaki [Tam16]
has recently reported similar results for depth-two circuits with both symmetric and
threshold gates.

A Powerful Randomized SAT Algorithm. Finally, combining the probabilistic
PTF (Theorem 6.3) and probabilistic polynomial (Theorem 6.1) for threshold func-
tions, we give a randomized SAT algorithm for a rather powerful class of circuits. The
class MAJ ∘AC0 ∘LTF ∘AC0 ∘LTF denotes the class of circuits with a majority gate at
the top, along with two layers of linear threshold gates, and arbitrary 𝑂(1)-depth AC0

circuitry between these three layers. This circuit class is arguably much more pow-
erful than TC0

3 (MAJ ∘MAJ ∘MAJ), based on known low-depth circuit constructions
for arithmetic functions (e.g. [CSV84, MT98, MT99]).

Theorem 6.10. For all 𝜀 > 0 and integers 𝑑 ≥ 1, there is a 𝛿 > 0 and a randomized
satisfiability algorithm for MAJ ∘AC0 ∘ LTF ∘AC0 ∘ LTF circuits of depth 𝑑 running in
2𝑛−Ω(𝑛𝛿) time, on circuits with the following properties:
∙ the top MAJ gate, along with every LTF on the middle layer, has 𝑂(𝑛6/5−𝜀)

fan-in, and
∙ there are 𝑂(2𝑛𝛿

) many AND/OR gates (anywhere) and LTF gates at the bottom
layer.

Theorem 6.10 applies the probabilistic PTF of degree about 𝑛1/3 (Theorem 6.3) to
the top MAJ gate, probabilistic polynomials over Z of degree about 𝑛1/2 (Theorem 6.1)
to the middle LTFs, and weight reduction to the bottom LTFs; the rest can be
represented with poly(𝑛𝛿) probabilistic degree.

It would not be surprising if the above circuit class contained strong pseudorandom
function candidates; that is, it seems likely that the Natural Proofs barrier applies
to this circuit class. Hence from the circuit lower bounds perspective, the problem of
derandomizing the SAT algorithm of Theorem 6.10 is extremely interesting.

6.2 Other Related Work
Chebyshev Polynomials in Theoretical Computer Science. New applications
of Chebyshev polynomials to algorithm design are a key component of the algorithms
in this Part. This is certainly not a new phenomenon in itself; here we briefly survey
some prior related usages of Chebyshev polynomials. First, Nisan and Szegedy [NS94]
used Chebyshev polynomials to compute the OR function on 𝑛 Boolean variables with
an “approximating” polynomial 𝑝 : R𝑛 → R, such that for all 𝑥 ∈ {0, 1}𝑛 we have
|𝑂𝑅(𝑥) − 𝑝(𝑥)| ≤ 1/3, yet deg(𝑝) = 𝑂(

√
𝑛). They also proved the degree bound is
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tight up to constants in the big-O; Paturi [Pat92] generalized the upper and lower
bound to all symmetric functions.

This work has led to several advances in learning theory. Building on the polyno-
mials of Nisan and Szegedy, Klivans and Servedio [KS01] showed how to compute an
OR of 𝑡 ANDs of 𝑤 variables with a PTF of degree 𝑂(

√
𝑤 log 𝑡), similar to our degree

bound for computing an OR of 𝑡 MAJORITYs of 𝑤 variables of Theorem 7.5 (how-
ever, note our bound in the “exact” setting is a bit better, due to our use of discrete
Chebyshev polynomials). They also show how to compute an OR of 𝑠 ANDs on 𝑛 vari-
ables with a deterministic PTF of 𝑂(𝑛1/3 log 𝑠) degree, similar to our cube-root-degree
probabilistic PTF for the OR of MAJORITY of Theorem 7.6 in the “exact” setting.
However, it looks difficult to generalize Klivans-Servedio’s 𝑂(𝑛1/3 log 𝑠) degree bound
to compute an OR of MAJORITY: part of their construction uses a reduction to de-
cision lists which works for conjunctions but not for MAJORITY functions. Klivans,
O’Donnell and Servedio [KOS04] show how to compute an AND of 𝑘 MAJORITY
on 𝑛 variables with a PTF of degree 𝑂(

√
𝑤 log 𝑘). By a simple transformation via

De Morgan’s law, there is a polynomial for OR of MAJORITY with the same degree.
Their degree is only slightly worse than ours in terms of 𝑘 (because we use discrete
Chebyshev polynomials).

In streaming algorithms, Harvey, Nelson, and Onak [HNO08] use Chebyshev poly-
nomials to design efficient algorithms for computing various notions of entropy in a
stream. As a consequence of a query upper bound in quantum computing, Ambainis
et al. [ACR+10] show how to approximate any Boolean formula of size 𝑠 with a polyno-
mial of degree 𝑠1/2+𝑜(1), improving on earlier bounds of O’Donnell and Servedio [OS10]
that use Chebyshev polynomials. Sachdeva and Vishnoi [SV13] give applications of
Chebyshev polynomials to graph algorithms and matrix algebra. Linial and Nisan
[LN90] use Chebyshev polynomials to approximate inclusion-exclusion formulas, and
Sherstov [She08] extends this to arbitrary symmetric functions.

Further Applications of our Polynomials for Threshold Functions. Since
the publication of a preliminary version of our polynomial constructions [AW15,
ACW16], other researchers have applied them to even more problems in matching and
computational geometry. Moeller et al. [MPS16] use them to give a subquadratic time
algorithm for finding stable matchings in the case when the preference lists are given
by a succinct representation rather than a quadratic-size list of lists. Chan [Cha18]
applies Chebyshev polynomials to a variety of problems in low-dimensional com-
putational geometry such as approximate nearest neighbor search and constructing
𝜀-kernels.

Hardness of Approximate Nearest Neighbor Search. In our Theorem 6.5,
we proved a lower bound on the running time of algorithms for exact batch near-
est neighbor search assuming the Strong Exponential Time Hypothesis (SETH). In
follow-up work, Rubinstein [Rub18] showed a similar hardness result for approximate
batch nearest neighbor search: assuming SETH, for every 𝛿 > 0, there is an 𝜀 > 0
such that the (1 + 𝜀)-approximate batch Hamming nearest neighbor problem on 𝑛
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input points requires Ω(𝑛2−𝛿) time. Assuming SETH, this gives a limit to how much
one can improve the running time of our algorithm in Theorem 6.6.

6.3 Bibliographic Details
This Part of the dissertation is based off of the results in three previously published
papers:

∙ ‘Probabilistic Polynomials and Hamming Nearest Neighbors’ with Ryan
Williams [AW15], which appeared in FOCS 2015,

∙ ‘Polynomial Representations of Threshold Functions and Algorithmic Applica-
tions’ with Timothy M. Chan and Ryan Williams [ACW16], which appeared in
FOCS 2016, and

∙ ‘An Illuminating Algorithm for the Light Bulb Problem’ [Alm19a], which ap-
peared in SOSA 2019.

Subsection 7.2.1, Section 7.4, Subsection 7.5.1, and Section 8.2 present results
from [AW15]. Section 8.4 presents results from [Alm19a]. Subsection 7.5.2, Sec-
tion 7.6, and the remainder of Chapter 8 present results from [ACW16]. The earlier
Sections of Chapter 7 give an introduction to the theory of probabilistic polynomials;
we cite the original sources of the results therein when appropriate.
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Chapter 7

Probabilistic Polynomials

7.1 Multilinear Polynomials Computing Boolean
Functions

The main topic of this chapter is polynomial representations of Boolean functions.
We focus in particular on multilinear polynomials.

Definition 7.1. A multilinear polynomial 𝑝 : 𝑅𝑛 → 𝑅 over a commutative ring 𝑅
is an exact polynomial for the Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} if we have
𝑝(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ {0, 1}𝑛.
Example 7.1. The polynomial 𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑥1 · 𝑥2 · · ·𝑥𝑛 exactly computes
AND(𝑥1, 𝑥2, . . . , 𝑥𝑛), since 𝑝 outputs 1 when all its inputs are 1, and it outputs 0
when any of its inputs is 0. Similarly, since we can write OR(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 1 −
AND(1−𝑥1, 1−𝑥2, . . . , 1−𝑥𝑛), it follows that OR(𝑥1, 𝑥2, . . . , 𝑥𝑛) is exactly computed
by the polynomial 1− 𝑝(1−𝑥1, 1−𝑥2, . . . , 1−𝑥𝑛) = 1− (1−𝑥1) · (1−𝑥2) · · · (1−𝑥𝑛).

The exact polynomial for a Boolean function 𝑓 can be seen as a change of basis
of 𝑓 . To be more precise, we need some definitions.

∙ For a subset 𝑇 ⊆ [𝑛], let 𝐼(𝑇 ) ∈ {0, 1}𝑛 denote the indicator vector for 𝑇 , which
has 𝐼(𝑇 )𝑖 = 1 when 𝑖 ∈ 𝑇 and 𝐼(𝑇 )𝑖 = 0 when 𝑖 /∈ 𝑇 .

∙ For an 𝑛-input Boolean function 𝑓 : {0, 1}𝑛 → {0, 1}, let 𝑉 (𝑓) ∈ {0, 1}2𝑛 , whose
entries are indexed by subsets 𝑇 ⊆ [𝑛], be the truth table vector of 𝑓 , which has
𝑉 (𝑓)𝑇 = 𝑓(𝐼(𝑇 )) for all 𝑇 ⊆ [𝑛].

∙ For 𝑛 ∈ N, define the matrix 𝑀SUB,n ∈ {0, 1}2
𝑛×2𝑛 , whose rows and columns are

indexed by subsets of [𝑛], and whose entry 𝑀SUB,n[𝑇, 𝑆] for 𝑇, 𝑆 ⊆ [𝑛] is given
by

𝑀SUB,n[𝑇, 𝑆] =

{︃
1 if 𝑆 ⊆ 𝑇,

0 otherwise.

Since 𝑀SUB,n is an upper-triangular matrix with all 1s on the diagonal, it has
determinant 1, so it has full rank and a unique inverse over any commutative
ring.

95



∙ Finally, any multilinear polynomial 𝑝 : 𝑅𝑛 → 𝑅 over a ring 𝑅 can be written as

𝑝(𝑥1, . . . , 𝑥𝑛) =
∑︁
𝑆⊆[𝑛]

𝛼𝑆 ·
∏︁
𝑖∈𝑆

𝑥𝑖. (7.1)

Let 𝛼(𝑝) ∈ 𝑅2𝑛 , whose entries are indexed by subsets of [𝑛], denote the coeffi-
cient vector of 𝑝, given by 𝛼(𝑝)𝑆 = 𝛼𝑆, the coefficient from (7.1).

Evidently, a Boolean function 𝑓 is in bijection with its truth table vector 𝑉 (𝑓),
and a multilinear polynomial 𝑝 is in bijection with its coefficient vector 𝛼(𝑝). When
𝑝 is an exact polynomial for 𝑓 , then these two vectors are a change of basis of one
another:

Proposition 7.1. The multilinear polynomial 𝑝 : 𝑅𝑛 → 𝑅 over a commutative ring
𝑅 is an exact polynomial for the Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} if and only if
𝑉 (𝑓) = 𝑀SUB,n · 𝛼(𝑝).

Proof. For any subset 𝑇 ⊆ [𝑛], we have

𝑝(𝐼(𝑇 )) =
∑︁
𝑆⊆𝑇

𝛼(𝑝)𝑆 = [𝑀SUB,n · 𝛼(𝑝)]𝑇 .

We therefore have 𝑝(𝐼(𝑇 )) = 𝑓(𝐼(𝑇 )) if and only if [𝑀SUB,n · 𝛼(𝑝)]𝑇 = 𝑉 (𝑓)𝑇 . This
must hold for all 𝑇 ⊆ [𝑛] for 𝑝 to exactly compute 𝑓 .

Corollary 7.1. For any Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} and any commutative
ring 𝑅, there is a unique multilinear polynomial 𝑝 : 𝑅𝑛 → 𝑅 such that 𝑝(𝑥) = 𝑓(𝑥)
for all 𝑥 ∈ {0, 1}𝑛.

So far, we have written any Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} in the ‘AND
basis’, i.e. the basis of monomials

∏︀
𝑖∈𝑆 𝑥𝑖 for 𝑆 ⊆ [𝑛] which compute the AND on a

subset of the inputs. One can similarly see that over any commutative ring 𝑅, every
Boolean function 𝑓 also has a unique representation over some other choices of basis,
including:

∙ The ‘NOR basis’ of functions
∏︀

𝑖∈𝑆(1− 𝑥𝑖) for 𝑆 ⊆ [𝑛].

∙ The ‘XOR basis’ of functions
⨁︀

𝑖∈𝑆 𝑥𝑖 = 1
2
− 1

2

∏︀
𝑖∈𝑆(1−2𝑥𝑖) for 𝑆 ⊆ [𝑛] (whenever

the characteristic of the ring 𝑅 is not positive and even).

7.2 Typically Correct Polynomials
One of the main goals in the polynomial method is to design low-degree polynomial
representations of Boolean functions. As we saw in Example 7.1 above, even very
simple Boolean functions like AND and OR on 𝑛 inputs require degree 𝑛 to compute
exactly, the maximum possible degree of a multilinear polynomial on 𝑛 inputs. In
order to achieve a lower degree, we need to weaken the requirements on our polyno-
mials. One natural way to do so is to require the polynomial be correct only on most
inputs:
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Definition 7.2. For any 𝜀 ∈ [0, 1], a multilinear polynomial 𝑝 : 𝑅𝑛 → 𝑅 over
a commutative ring 𝑅 is a (1 − 𝜀)-correct polynomial for the Boolean function 𝑓 :
{0, 1}𝑛 → {0, 1} if we have 𝑝(𝑥) = 𝑓(𝑥) for at least a (1−𝜀) fraction of all 𝑥 ∈ {0, 1}𝑛.
The (1 − 𝜀)-correct degree of 𝑓 over 𝑅 is the minimum degree of such a polynomial
𝑝.

Many functions have much lower (1 − 𝜀)-correct degree than exact degree. For
instance, although AND on 𝑛 inputs has exact degree 𝑛, its (1− 𝜀)-correct degree is
0 for any 𝜀 ≥ 2−𝑛, since the polynomial 𝑝(𝑥) = 0 computes it correctly on all but
one point from {0, 1}𝑛. Such simple constructions like this are, unfortunately, not
particularly useful in applications.

That said, there are interesting Boolean functions whose (1− 𝜀)-correct degree is
less trivial. Consider, for instance, the majority function MAJ on 𝑛 inputs. Although
MAJ has exact degree 𝑛, we will show in the remainder of this section that it has
𝜀-typically correct degree Θ(

√︀
𝑛 log(1/𝜀)) for all 𝜀 > 0.

7.2.1 Interpolating Polynomials for Symmetric Functions

We begin in this subsection by proving the upper bound, that MAJ on 𝑛 variables has
(1− 𝜀)-correct degree 𝑂(

√︀
𝑛 log(1/𝜀)). The key new polynomial construction we will

need is an interpolating polynomial for correctly computing symmetric Boolean func-
tions on inputs of certain Hamming weights. Such a polynomial can be derived from
prior work (at least over fields [Sri13]), but for completeness, we prove its existence
here.

Lemma 7.1. For any integers 𝑛, 𝑟, 𝑘 with 𝑛 ≥ 𝑘+𝑟 and any integers 𝑐1, . . . , 𝑐𝑟, there
is a multivariate polynomial 𝑝 : {0, 1}𝑛 → Z of degree 𝑟 − 1 with integer coefficients
such that 𝑝(𝑥) = 𝑐𝑖 for all 𝑥 ∈ {0, 1}𝑛 with Hamming weight |𝑥| = 𝑘 + 𝑖.

Notice that it is not immediately obvious from univariate polynomial interpolation
that the polynomial 𝑝 exists as described, since the univariate polynomial 𝑞 : R→ R
such that 𝑞(𝑘+ 𝑖) = 𝑐𝑖 typically has rational (non-integer) coefficients. Lemma 7.1 is
more general than a result claimed without proof by Srinivasan ([Sri13], Lemma 14).
It also generalizes of a theorem of Bhatnagar et al. ([BGL06], Theorem 2.8).

Proof. Our polynomial 𝑝 will have the form

𝑝(𝑥1, . . . , 𝑥𝑛) =
𝑟−1∑︁
𝑖=0

𝑎𝑖 ·
∑︁
𝑆⊆[𝑛]
|𝑆|=𝑖

(︃∏︁
𝑗∈𝑆

𝑥𝑗

)︃

for some constants 𝑎0, . . . , 𝑎𝑟−1 ∈ Z. Hence, we will get that for any 𝑥 ∈ {0, 1}𝑛:

𝑝(𝑥) =
𝑟−1∑︁
𝑖=0

(︂
|𝑥|
𝑖

)︂
𝑎𝑖.

97



Define the matrix:

𝑀 =

⎛⎜⎜⎜⎝
(︀
𝑘+1
0

)︀ (︀
𝑘+1
1

)︀
· · ·

(︀
𝑘+1
𝑟−1

)︀(︀
𝑘+2
0

)︀ (︀
𝑘+2
1

)︀
· · ·

(︀
𝑘+2
𝑟−1

)︀
...

... . . . ...(︀
𝑘+𝑟
0

)︀ (︀
𝑘+𝑟
1

)︀
· · ·

(︀
𝑘+𝑟
𝑟−1

)︀
⎞⎟⎟⎟⎠ .

The conditions of the stated lemma are that

𝑀

⎛⎜⎜⎜⎝
𝑎0
𝑎1
...

𝑎𝑟−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝑐1
𝑐2
...
𝑐𝑟

⎞⎟⎟⎟⎠ .

By Lemma 7.2 (proved below), 𝑀 always has determinant 1. Because 𝑀 is a matrix
with integer entries and determinant 1, its inverse 𝑀−1 is also an integer matrix.
Multiplying through by 𝑀−1 above gives integer expressions for the 𝑎𝑖, as desired.

Lemma 7.2. For any univariate polynomials 𝑝1, 𝑝2, . . . , 𝑝𝑟 such that 𝑝𝑖 has degree
𝑖− 1, and any pairwise distinct 𝑥1, 𝑥2, . . . , 𝑥𝑟 ∈ Z, the matrix

𝑀 =

⎛⎜⎜⎜⎝
𝑝1(𝑥1) 𝑝2(𝑥1) · · · 𝑝𝑟(𝑥1)
𝑝1(𝑥2) 𝑝2(𝑥2) · · · 𝑝𝑟(𝑥2)

...
... . . . ...

𝑝1(𝑥𝑟) 𝑝2(𝑥𝑟) · · · 𝑝𝑟(𝑥𝑟)

⎞⎟⎟⎟⎠
has determinant

𝑑𝑒𝑡(𝑀) =

(︃
𝑟∏︁

𝑖=1

𝑐𝑖

)︃
·

(︃ ∏︁
1≤𝑖<𝑗≤𝑟

(𝑥𝑗 − 𝑥𝑖)

)︃
,

where 𝑐𝑖 is the coefficient of 𝑥𝑖−1 in 𝑝𝑖.

Proof. For 𝑖 from 1 up to 𝑟 − 1, we can add multiples of column 𝑖 of 𝑀 to the
subsequent columns in order to make the coefficient of 𝑥𝑖−1 in all the other columns
0. The resulting matrix is

𝑀 ′ =

⎛⎜⎜⎜⎝
𝑐1 𝑐2𝑥1 · · · 𝑐𝑟𝑥

𝑟−1
1

𝑐1 𝑐2𝑥2 · · · 𝑐𝑟𝑥
𝑟−1
2

...
... . . . ...

𝑐1 𝑐2𝑥𝑟 · · · 𝑐𝑟𝑥
𝑟−1
𝑟

⎞⎟⎟⎟⎠ .

This is a Vandermonde matrix which has the desired determinant.

Since MAJ is a symmetric function, we can use Lemma 7.1 to get a (1− 𝜀)-correct
degree upper bound for it:

Corollary 7.2. Over any commutative ring 𝑅, MAJ on 𝑛 inputs has (1− 𝜀)-correct
degree 𝑂(

√︀
𝑛 log(1/𝜀)) for all 𝜀 ∈ (0, 1).
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Proof. Applying Lemma 7.1, we know there is a polynomial 𝑝 : {0, 1}𝑛 → Z over Z
of degree 𝑂(

√︀
𝑛 log(1/𝜀)) with integer coefficients such that 𝑝(𝑥) = MAJ(𝑥) for all

𝑥 ∈ {0, 1}𝑛 such that ||𝑥| − 𝑛/2| ≤
√︀
𝑛 log(1/𝜀). We can view 𝑝 as a polynomial over

𝑅 (possibly by taking 𝑝mod the characteristic of𝑅 when𝑅 has positive characteristic)
which is correct for all such 𝑥 as well.

It remains to show that the fraction of 𝑥 ∈ {0, 1}𝑛 with ||𝑥| − 𝑛/2| ≤
√︀
𝑛 log(1/𝜀)

is at least 1 − 𝜀. This is equivalent to showing that, if we draw an 𝑥 ∼ {0, 1}𝑛
uniformly at random, then the probability that ||𝑥| − 𝑛/2| ≥

√︀
𝑛 log(1/𝜀) is at most

𝜀. By Hoeffding’s inequality (Lemma 2.1 from the Preliminaries) we see that

Pr
[︁
|𝑥| ≤ 𝑛

2
−
√︀
𝑛 log(1/𝜀)

]︁
≤ exp

(︃
−

2(
√︀
𝑛 log(1/𝜀))2

𝑛

)︃
= exp (−2 log(1/𝜀)) <

𝜀

2
.

By symmetry, we also have Pr
[︁
|𝑥| ≥ 𝑛

2
+
√︀
𝑛 log(1/𝜀)

]︁
< 𝜀/2, and so in total, we

have that the probability of ||𝑥| − 𝑛/2| ≥
√︀
𝑛 log(1/𝜀) is at most 𝜀, as desired.

7.2.2 The Razborov-Smolensky Lower Bound

We now prove a matching lower bound, that MAJ on 𝑛 variables requires (1 − 𝜀)-
correct degree Ω(

√︀
𝑛 log(1/𝜀)). This is the classic result of Razborov [Raz87] and

Smolensky [Smo87]; in this subsection, we present the proof technique of Razborov.
We begin with a Lemma showing that low-degree (1−𝜀)-correct polynomials for MAJ
lead to relatively low-degree (1− 𝜀)-correct polynomials for any Boolean function.

Lemma 7.3. For any commutative ring 𝑅 and set 𝑆 ⊆ {0, 1}𝑛, suppose there is a
polynomial 𝑝 : 𝑅𝑛 → 𝑅 of degree 𝑑𝑒𝑔(𝑝) = 𝑑, such that 𝑝(𝑥) = MAJ(𝑥) for all 𝑥 ∈ 𝑆.
Then, for any Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} there is a polynomial 𝑞 : 𝑅𝑛 → 𝑅
of degree at most 𝑑𝑒𝑔(𝑞) ≤ 𝑛/2 + 𝑑 such that 𝑞(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ 𝑆.

Proof. Let 𝑡 : 𝑅𝑛 → 𝑅 be the exact multilinear polynomial for 𝑓 over 𝑅, meaning
𝑡(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ {0, 1}𝑛. We can write 𝑡 out in two different ways, first over
the ‘AND basis’ of monomials:

𝑡(𝑥) =
∑︁
𝑇⊆[𝑛]

𝑎𝑇
∏︁
𝑖∈𝑇

𝑥𝑖,

and second over the ‘NOR basis’:

𝑡(𝑥) =
∑︁
𝑇⊆[𝑛]

𝑏𝑇
∏︁
𝑖∈𝑇

(1− 𝑥𝑖),

where the 𝑎𝑇 , 𝑏𝑇 ∈ 𝑅 are the appropriate coefficients.
Notice that if 𝑥 ∈ {0, 1}𝑛 is such that MAJ(𝑥) = 0, then for any 𝑇 ⊆ [𝑛] with
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|𝑇 | > 𝑛/2 we have
∏︀

𝑖∈𝑇 𝑥𝑖 = 0. Hence,

If MAJ(𝑥) = 0, then 𝑓(𝑥) =
∑︁

𝑇⊆[𝑛] s.t. |𝑇 |≤𝑛/2

𝑎𝑇
∏︁
𝑖∈𝑇

𝑥𝑖.

Similarly,

If MAJ(𝑥) = 1, then 𝑓(𝑥) =
∑︁

𝑇⊆[𝑛] s.t. |𝑇 |≤𝑛/2

𝑏𝑇
∏︁
𝑖∈𝑇

(1− 𝑥𝑖).

Combining, we see that for all 𝑥 ∈ {0, 1}𝑛,

𝑓(𝑥) = MAJ(𝑥) ·

⎡⎣ ∑︁
𝑇⊆[𝑛] s.t. |𝑇 |≤𝑛/2

𝑏𝑇
∏︁
𝑖∈𝑇

(1− 𝑥𝑖)

⎤⎦
+ (1−MAJ(𝑥)) ·

⎡⎣ ∑︁
𝑇⊆[𝑛] s.t. |𝑇 |≤𝑛/2

𝑎𝑇
∏︁
𝑖∈𝑇

𝑥𝑖

⎤⎦ .
Substituting 𝑝 for MAJ above gives the desired polynomial 𝑞.

We can now prove our lower bound:

Theorem 7.1 ([Raz87, Smo87]). There is a constant 𝑐 > 0 such that, for every
𝜀 ∈ (0, 1/2), every commutative ring 𝑅 (other than the trivial ring), and every (1−𝜀)-
correct polynomial 𝑝 for MAJ over 𝑅, the degree of 𝑝 is at least 𝑐 ·

√︀
𝑛 log(1/𝜀).

Proof. Assume to the contrary that there is such a polynomial 𝑝 : 𝑅𝑛 → 𝑅 of degree
𝑑 < 𝑐

√︀
𝑛 log(1/𝜀). Let 𝑆 ⊆ {0, 1}𝑛 be the set of 𝑥 such that 𝑝(𝑥) = MAJ(𝑥); by

assumption we have |𝑆| ≥ (1− 𝜀) · 2𝑛. In particular, by Lemma 7.3, for every 𝑠 ∈ 𝑆,
there is a multilinear polynomial 𝑝𝑠 : 𝑅𝑛 → 𝑅 of degree at most 𝑛/2 + 𝑑 such that
𝑝𝑠(𝑠) = 1 and 𝑝𝑠(𝑥) = 0 for all 𝑥 ∈ 𝑆 ∖ {𝑠}.

Consider the vector space 𝑉 of 𝑅-linear combinations of the 𝑝𝑠 polynomials, i.e.
𝑉 = {

∑︀
𝑠∈𝑆 𝑎𝑠 · 𝑝𝑠(𝑥) | 𝑎𝑠 ∈ 𝑅}. The 𝑝𝑠 polynomials are linearly independent, since

any linear combination 𝑝′ of the 𝑝𝑠′ for 𝑠′ ̸= 𝑠 will have 𝑝′(𝑠) = 0, whereas 𝑝𝑠(𝑠) = 1.
Hence, the dimension of 𝑉 is at least |𝑆| ≥ (1− 𝜀) · 2𝑛.

Meanwhile, every polynomial in 𝑉 has degree at most 𝑛/2 + 𝑑, and so 𝑉 is a
subspace of the space 𝑉 ′ of multilinear polynomials over 𝑅 of degree at most 𝑛/2 +𝑑.
This space 𝑉 ′ is spanned by the multilinear monomials of degree at most 𝑛/2 + 𝑑.
The number of such monomials is

𝑛/2+𝑑∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
= 2𝑛 −

𝑛/2−𝑑∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
≤ 2𝑛 −

(︂
𝑛

𝑛/2− 𝑑

)︂
.

Applying Corollary 2.1 from the Preliminaries, we can further upper bound this by:

≤ 2𝑛 − 2𝑛−Θ(𝑑2/𝑛) = 2𝑛 · (1− 2−Θ(𝑑2/𝑛)) < 2𝑛 · (1− 2−Θ(𝑐2) log(1/𝜀)) = 2𝑛 · (1− 𝜀Θ(𝑐2)).
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If we pick a sufficiently small 𝑐 > 0 then this is less than 2𝑛 · (1 − 𝜀). Then 𝑉 ′, a
vector space of dimension less than 2𝑛 · (1 − 𝜀), contains as a subspace 𝑉 , a vector
space of dimension at least 2𝑛 · (1− 𝜀), a contradiction.

7.3 Probabilistic Polynomials

In the previous section, we showed that MAJ on 𝑛 bits has (1 − 𝜀)-correct degree
Θ(
√︀
𝑛 log(1/𝜀)) over any commutative ring 𝑅. However, for other Boolean functions

like AND and OR, the (1 − 𝜀)-correct polynomials were trivial. This is because of a
weakness of typically correct polynomials for a Boolean function 𝑓 : they can concen-
trate their errors on the ‘hard’ inputs of 𝑓 . In the case of OR, the polynomial can
simply get the answer wrong on the one point where it should output 0.

In our algorithmic applications below, we will need a stronger polynomial notion
than this, in which the polynomial has a good chance of getting any given input
correct:

Definition 7.3. For any 𝜀 ∈ [0, 1], and any commutative ring 𝑅, a probabilistic
polynomial with error 𝜀 and degree 𝑑 for the Boolean function 𝑓 : {0, 1}𝑛 → {0, 1}
is a distribution 𝒫 on polynomials 𝑝 : {0, 1}𝑛 → 𝑅 of degree at most 𝑑 over 𝑅 such
that, for every 𝑥 ∈ {0, 1}𝑛, we have

Pr
𝑝∼𝒫

[𝑝(𝑥) = 𝑓(𝑥)] ≥ 1− 𝜀.

The 𝜀-probabilistic degree of 𝑓 over 𝑅 is the minimum degree of a probabilistic poly-
nomial with error 𝜀 for 𝑓 .

A probabilistic polynomial is required to take all the different values of 𝑓(𝑥) into
account by enforcing that 𝜀 is the worst case probability, among all 𝑥 ∈ {0, 1}𝑛, that
𝑝 ∼ 𝒫 incorrectly outputs a value 𝑝(𝑥) ̸= 𝑓(𝑥).

For every 𝜀 ∈ (0, 1), every commutative ring 𝑅, and every Boolean function 𝑓 :
{0, 1}𝑛 → {0, 1}, we can see that the 𝜀-probabilistic degree of 𝑓 over 𝑅 is at least
the (1 − 𝜀)-correct degree of 𝑓 over 𝑅. We next give two examples where there is a
separation between the two.

7.3.1 The Probabilistic Degree of OR

We noted earlier that the (1− 2−𝑛)-correct degree of OR is 0. In this subsection, we
present classical polynomial constructions for OR, showing that the 𝜀-probabilistic
degree of OR on 𝑛 inputs is Θ(log 1/𝜀) over the finite field F𝑞 for prime 𝑞, and
𝑂(log 𝑛 log(1/𝜀)) over Z. The upper bounds extend without much work to any com-
mutative ring 𝑅 as well.

Proposition 7.2 ([Raz87, Smo87]). For any prime 𝑞 and any 𝜀 ∈ (0, 1), the 𝜀-
probabilistic degree of OR on 𝑛 inputs over F𝑞 is at most (𝑞 − 1) · ⌈log𝑞(1/𝜀)⌉.
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Proof. We construct a probabilistic polynomial 𝒫 for OR on 𝑛 inputs. To draw
a polynomial from 𝒫 , pick 𝑘 = ⌈log𝑞(1/𝜀)⌉ independent uniformly random hash
functions ℎ1, . . . , ℎ𝑘 : [𝑛]→ F𝑞, then output the polynomial

𝑝(𝑥1, . . . , 𝑥𝑛) = 1−
𝑘∏︁

ℓ=1

⎛⎝1−

(︃
𝑛∑︁

𝑖=1

ℎℓ(𝑖) · 𝑥𝑖

)︃𝑞−1
⎞⎠ .

The degree of 𝑝 is (𝑞 − 1) · 𝑘 as desired.
We now prove correctness. When 𝑥 ∈ {0, 1} is such that OR(𝑥) = 0, then 𝑥𝑖 = 0

for all 𝑖 ∈ [𝑛], so 𝑝 always outputs 0. Otherwise, if OR(𝑥) = 1, then there is at least
one 𝑖 ∈ [𝑛] such that 𝑥𝑖 = 1. It follows that, for each ℓ ∈ [𝑘], the sum

∑︀𝑛
𝑖=1 ℎℓ(𝑖) · 𝑥𝑖

is a uniformly random element of F𝑞. In particular, with probability 1− 1/𝑞 we have∑︀𝑛
𝑖=1 ℎℓ(𝑖) · 𝑥𝑖 ̸= 0, and hence (

∑︀𝑛
𝑖=1 ℎℓ(𝑖) · 𝑥𝑖)

𝑞−1
= 1 by Fermat’s little theorem. If

this is the case for any ℓ ∈ [𝑘] then 𝑝 outputs 1. Hence, since the 𝑘 hash functions
are independent, the probability that 𝑝 does not output 1 is 𝑞−𝑘 ≤ 𝜀, as desired.

We show next that, up to constant factors, the degree upper bound achieved in
Proposition 7.2 is tight.

Proposition 7.3. For any commutative ring 𝑅 (other than the trivial ring) and
any 𝜀 ∈ [2−𝑛, 1/4], the 𝜀-probabilistic degree of OR on 𝑛 inputs over 𝑅 is at least
log(1/𝜀)− 1.

Proof. Suppose that OR on 𝑛 inputs has a probabilistic polynomial 𝒫 of degree 𝑑 for
error 𝜀 over 𝑅. Let 𝑚 be the biggest integer less than log(1/𝜀), so that log(1/𝜀)−1 ≤
𝑚 < log(1/𝜀), and note that 𝑚 ≤ 𝑛.

We construct a probabilistic polynomial 𝒬 for OR on 𝑚 inputs, by drawing a
random 𝑝 ∼ 𝒫 and outputting 𝑞(𝑥1, . . . , 𝑥𝑚) = 𝑝(𝑥1, . . . , 𝑥𝑚, 0, . . . , 0), where we have
set 𝑥𝑖 = 0 in 𝑝 for all 𝑖 > 𝑚. Since 𝒬 is just a restriction of the inputs to 𝒫 , we have
that 𝒬 is a probabilistic polynomial for OR on 𝑚 inputs with error 𝜀 and degree 𝑑.

There are only 2𝑚 different possible values for the 𝑚 binary inputs to 𝒬, but 𝒬
has error 𝜀 < 2−𝑚. Hence, there must be a polynomial in the support of 𝒬 that
makes no errors, and exactly computes OR on 𝑚 input bits. This polynomial must
have degree at least 𝑚, so it follows that 𝑑 ≥ 𝑚. In particular, we get as desired that
𝑑 ≥ 𝑚 ≥ log(1/𝜀)− 1.

Our probabilistic polynomial construction in Proposition 7.2 above critically relied
on the finite field we were working over. We next present another construction with
slightly higher degree that works over Z, and hence over any commutative ring 𝑅.

Proposition 7.4 ([ABFR94, Lemma 5.1]). For any 𝜀 ∈ (0, 1), the 𝜀-probabilistic
degree of OR on 𝑛 inputs over Z is at most 𝑂(log(1/𝜀) · log 𝑛).

Proof. We first construct a distribution 𝒫 ′ on polynomials 𝑝′ : Z𝑛 → Z of degree
𝑂(log 𝑛) over Z such that

∙ 𝑝′(0, 0, . . . , 0) = 0 for all 𝑝′ in the support of 𝒫 ′, and
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∙ for all 𝑥 ∈ {0, 1}𝑛 with OR(𝑥) = 1, we have Pr𝑝′∼𝒫 ′ [𝑝′(𝑥) = 1] ≥ 1/2.

Once we have constructed 𝒫 ′, we can then construct our desired probabilistic polyno-
mial for OR with error 𝜀 and degree 𝑂(log(1/𝜀) · log 𝑛) by drawing 𝑘 := ⌈log(1/𝜀)⌉ in-
dependent 𝑝′1, . . . , 𝑝′𝑘 ∼ 𝒫 ′, and outputting the polynomial 𝑝(𝑥) = 1−

∏︀𝑘
ℓ=1(1−𝑝′𝑖(𝑥)).

We now construct 𝒫 ′. To draw a polynomial 𝑝′ from 𝒫 ′, we first pick 𝑚 :=
⌈log 𝑛⌉ + 3 random subsets 𝑆0, 𝑆1, . . . , 𝑆𝑚−1 ⊆ [𝑛] as follows: set 𝑆0 = [𝑛], then for
each ℓ from 1 up to 𝑚−1, let 𝑆ℓ be a uniformly random subset of 𝑆ℓ−1, which includes
each element independently with probability 1/2. We then output the polynomial

𝑝′(𝑥) = 1−
𝑚−1∏︁
ℓ=0

(︃
1−

∑︁
𝑖∈𝑆ℓ

𝑥𝑖

)︃
,

which has degree 𝑚 ≤ 𝑂(log 𝑛).
For a given 𝑥 ∈ {0, 1}𝑛, if OR(𝑥) = 0, then 𝑥𝑖 = 0 for all 𝑖 ∈ [𝑛] and we will always

have 𝑝′(𝑥) = 0. Otherwise, if OR(𝑥) = 1, then for each ℓ ∈ {0, 1, . . . ,𝑚 − 1}, define
the random variable 𝑠ℓ(𝑥) :=

∑︀
𝑖∈𝑆ℓ

𝑥𝑖. Since OR(𝑥) = 1, we have that 𝑠0(𝑥) ≥ 1. The
𝑠ℓ(𝑥) form a sequence of nonnegative integers with 𝑠ℓ(𝑥) ≤ 𝑠ℓ−1(𝑥) for all ℓ ∈ [𝑚− 1].
Moreover, each 𝑠ℓ(𝑥) is distributed as the sum of 𝑠ℓ−1(𝑥) independent random values
from {0, 1}. If there is any ℓ ∈ {0, 1, . . . ,𝑚 − 1} such that 𝑠ℓ(𝑥) = 1, then 𝑝′ will
output 1. Notice that exactly one of the following must be the case:

∙ 𝑠ℓ(𝑥) > 1 for all ℓ ∈ {0, 1, . . . ,𝑚 − 1}. Since 𝑠0(𝑥) ≤ 𝑛, we can apply a
union bound to see that this occurs with probability at most 𝑛 · 2−(𝑚−1) ≤
𝑛 · 2− log(𝑛)−2 ≤ 1/4.

∙ 𝑠0(𝑥) = 1.

∙ There is some ℓ ∈ [𝑚 − 1] such that 𝑠ℓ−1(𝑥) > 1 and 𝑠ℓ(𝑥) ≤ 1. Note that,
given the value 𝑠ℓ−1(𝑥), we have that 𝑠ℓ(𝑥) = 0 with probability 2−𝑠ℓ−1(𝑥), and
𝑠ℓ(𝑥) = 1 with probability 𝑠ℓ−1(𝑥) · 2−𝑠ℓ−1(𝑥). Hence, conditioned on 𝑠ℓ(𝑥) ≤ 1,
we have that 𝑠ℓ(𝑥) = 1 with probability 𝑠ℓ−1(𝑥)/(𝑠ℓ−1(𝑥) + 1) ≥ 2/3.

Since one of the latter two cases occurs with probability at least 3/4, and in each of
those cases, there is an ℓ ∈ {0, 1, . . . ,𝑚 − 1} such that 𝑠ℓ(𝑥) = 1 with probability
at least 2/3, it follows that 𝑝′ will output 1 with probability at least 3

4
· 2
3

= 1
2
, as

desired.

7.3.2 The Probabilistic Degree of Biased Threshold Functions

In the previous subsection, we saw that the OR function has (1 − 𝜀)-correct degree
0, and 𝜀-probabilistic degree 𝑂(log 1/𝜀) over, say, F2. The difference between these
two degrees can grow unboundedly as 𝜀 → 0, but it is only a constant when 𝜀 is a
constant. In this subsection, we present a different Boolean function for which the
two degrees differ by an unbounded amount even in the constant 𝜀 regime.
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Let TH3/4 : {0, 1}𝑛 → {0, 1} be the Boolean function

TH3/4(𝑥) =

{︃
1 if |𝑥| ≥ 3𝑛/4,

0 otherwise.

Proposition 7.5. For sufficiently large 𝑛, the function TH3/4 has (2/3)-correct degree
0.

Proof. The polynomial 𝑝(𝑥) = 0 is correct on every input 𝑥 ∈ {0, 1}𝑛 with |𝑥| ≤ 3𝑛/4.
The number of inputs it gets wrong is at most (using the bound from Proposition 2.3
from the Preliminaries):

∑︀𝑛/4
𝑖=0

(︀
𝑛
𝑖

)︀
≤ 2𝐻(1/4)·𝑛−𝑜(𝑛) ≤ 20.82·𝑛+𝑜(𝑛), which is less than

1
3
2𝑛 for big enough 𝑛.

Proposition 7.6. The function TH3/4 on 𝑛 inputs has (1/3)-probabilistic degree
Ω(
√
𝑛).

Proof. When half of its inputs are restricted to 0, the function TH3/4 on 𝑛 inputs
becomes the function MAJ on 𝑛/2 inputs. Similar to the proof of Proposition 7.3,
it follows that the (1/3)-probabilistic degree of TH3/4 on 𝑛 is lower bounded by the
(1/3)-probabilistic degree of MAJ on 𝑛/2 inputs. But, by Theorem 7.1 (and the fact
that the (1− 𝜀)-correct degree is a lower bound on the 𝜀-probabilistic degree) this is
Ω(
√
𝑛), as desired.

7.4 Probabilistic Polynomials for Majority

In the previous section, we saw examples of Boolean functions whose (1− 𝜀)-correct
degree was much lower than their 𝜀-probabilistic degree. We saw in Section 7.2 that
MAJ on 𝑛 inputs has 𝜀-typically correct degree Θ(

√︀
𝑛 log(1/𝜀)) over any commutative

ring 𝑅. This raises the question: does MAJ on 𝑛 inputs have 𝜀-probabilistic degree
𝑂(
√︀
𝑛 log(1/𝜀)) as well?

In this section, we show that the answer is yes, by giving a new probabilistic
polynomial construction for MAJ. As we will see in the next Chapter, this prob-
abilistic polynomial construction will be crucial in a number of our applications,
including to nearest neighbor search algorithms. The previous best construction, by
Srinivasan [Sri13], achieved degree 𝑂(

√︀
𝑛 log(1/𝜀) · polylog(𝑛)); we will see that the

extra polylog(𝑛) factor would have been prohibitive in most of our applications (see
Remark 8.1 in the next Chapter for more details).

Theorem 7.2. There is a probabilistic polynomial over Z for MAJ on 𝑛 variables
with error 𝜀 and degree 𝑑(𝑛, 𝜀) = 𝑂(

√︀
𝑛 log(1/𝜀)). Furthermore, a polynomial can be

sampled from the probabilistic polynomial distribution in �̃�(
∑︀𝑑(𝑛,𝜀)

𝑖=0

(︀
𝑛
𝑖

)︀
) time.

Notation. For 𝜃 ∈ [0, 1], define TH𝜃 : {0, 1}𝑛 → {0, 1} to be the threshold func-
tion TH𝜃(𝑥1, . . . , 𝑥𝑛) := [|𝑥|/𝑛 ≥ 𝜃]. In particular, TH1/2 = MAJ. We also define
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NEAR𝜃,𝛿 : {0, 1}𝑛 → {0, 1}, such that NEAR𝜃,𝛿(𝑥) := [|𝑥|/𝑛 ∈ [𝜃 − 𝛿, 𝜃 + 𝛿]]. Intu-
itively, NEAR𝜃,𝛿 checks whether |𝑥|/𝑛 is “near” 𝜃, with error 𝛿.

In the remainder of this Section, we prove Theorem 7.2. To do so, we construct a
probabilistic polynomial for TH𝜃 over Z[𝑥1, . . . , 𝑥𝑛] which has degree 𝑂(

√︀
𝑛 log(1/𝜖))

and on each input is correct with probability at least 1− 𝜖.

Intuition for the construction. First, let us suppose |𝑥|/𝑛 is not too close to 𝜃:
in particular |𝑥|/𝑛 is not within 𝛿 = 𝑂(

√︀
log(1/𝜖)/𝑛) of 𝜃. Then, if we construct a

new smaller vector �̃� by sampling 1/10 of the entries of 𝑥, it is likely that |�̃�|/(𝑛/10)
lies on the same side of 𝜃 as |𝑥|/𝑛. This suggests a recursive strategy: we can use
our polynomial construction on the sample �̃�. Second, if |𝑥|/𝑛 is close to 𝜃, then
by interpolating, we can use an exact polynomial of degree 𝑂(

√︀
𝑛 log(1/𝜖)) (which

we call 𝐴𝑛,𝜃,𝑔) that is guaranteed to give the correct answer. To decide which of the
two cases we are in, we will use a probabilistic polynomial for NEAR (on a smaller
number of variables), which can itself be written as the product of two probabilistic
polynomials for TH. The degree incurred by recursive calls can be adjusted to have
tiny overhead, with the right parameters.

In comparison, Srinivasan [Sri13] takes a number theoretic approach. For Ω(log 𝑛)
different primes 𝑝, his polynomial uses 𝑝− 1 probabilistic polynomials in order to de-
termine the Hamming weight of the input (mod 𝑝). Then, it uses an exact polynomial
inspired by the Chinese Remainder Theorem to determine the true Hamming weight
of the input, and whether it is at least 𝑛/2. This approach works on a more general
class of functions than ours, called 𝑊 -sum determined, which are determined by a
weighted sum of the input coordinates. However, the number of primes being consid-
ered inherently means that this type of approach will incur extra logarithmic degree
increases. In fact, we also give a better probabilistic degree for every symmetric
function.

Probabilistic Polynomial Definition. Let 𝑛 be an integer for which we want
to compute 𝑇𝐻𝜃. Let 𝐴𝑛,𝜃,𝑔 : {0, 1}𝑛 → Z be an exact polynomial with integer
coefficients of degree at most 2𝑔

√
𝑛+1 which gives the correct answer to TH𝜃 for any

vector 𝑥 with |𝑥| ∈ [𝜃𝑛 − 𝑔
√
𝑛, 𝜃𝑛 + 𝑔

√
𝑛], and can give arbitrary answers to other

vectors. Such a polynomial 𝐴𝑛,𝜃,𝑔 exists by Lemma 7.1 above.
Let 𝑀𝑚,𝜃,𝜖 : {0, 1}𝑚 → Z denote the probabilistic polynomial for TH𝜃 with error

≤ 𝜖 degree as described above for all 𝑚 < 𝑛. We can assume as a base case that when
𝑚 is constant, we simply use the exact polynomial for TH𝜃.

Define
𝑆𝑚,𝜃,𝛿,𝜖(𝑥) := (1−𝑀𝑚,𝜃+𝛿,𝜖(𝑥)) ·𝑀𝑚,𝜃−𝛿,𝜖(𝑥).

Assuming 𝑀𝑛,𝜃,𝜖 works as prescribed (with ≤ 𝜖 error), this is a probabilistic poly-
nomial for NEAR𝜃,𝛿 with error at most 2𝜖. For 𝑥 ∈ {0, 1}𝑛, let �̃� ∈ {0, 1}𝑛/10 be
a vector of length 𝑛/10, where each entry is an independent and uniformly random
entry of 𝑥. Hence, each entry of �̃� is a probabilistic polynomial in 𝑥 of degree 1. Let
𝑎 =
√

10 ·
√︀

ln(1/𝜖). Our probabilistic polynomial for TH𝜃 on 𝑛 variables is defined
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to be:

𝑀𝑛,𝜃,𝜖(𝑥) := 𝐴𝑛,𝜃,2𝑎(𝑥) · 𝑆𝑛/10,𝜃,𝑎/
√
𝑛,𝜖/4(�̃�) +𝑀𝑛/10,𝜃,𝜖/4(�̃�) · (1− 𝑆𝑛/10,𝜃,𝑎/

√
𝑛,𝜖/4(�̃�)).

Note that �̃� denotes the same randomly chosen vector in each of its appearances,
and 𝑆𝑛/10,𝜃,𝑎/

√
𝑛,𝜖/4 denotes the same draw from the random polynomial distribution

in both of its appearances.

Degree of 𝑀𝑛,𝜃,𝜀. First we show by induction on 𝑛 that 𝑀𝑛,𝜃,𝜀 has degree ≤
41
√︀
𝑛 ln(1/𝜖). Assume that 𝑀𝑚,𝜃,𝜖 has degree ≤ 41

√︀
𝑚 ln(1/𝜖) for all 𝑚 < 𝑛. The

degree of 𝑀𝑛,𝜃,𝜖 is thus equal to

max
{︀

deg
[︀
𝐴𝑛,𝜃,2𝑎(𝑥) · 𝑆𝑛/10,𝜃,𝑎/

√
𝑛,𝜖/4(�̃�)

]︀
, deg

[︀
𝑀𝑛/10,𝜃,𝜖/4(�̃�) · (1− 𝑆𝑛/10,𝜃,𝑎/

√
𝑛,𝜖/4(�̃�))

]︀}︀
= deg(𝑆𝑛/10,𝜃,𝑎/

√
𝑛,𝜖/4(�̃�)) + max{deg(𝐴𝑛,𝜃,2𝑎(𝑥)), deg(𝑀𝑛/10,𝜃,𝜖/4(�̃�))}

≤ 2 · 41

√︂
𝑛

10
ln(4/𝜖) + max

{︂
4𝑎
√
𝑛, 41

√︂
𝑛

10
ln(4/𝜖)

}︂
= 2 · 41

√︂
𝑛

10
ln(4/𝜖) + max

{︂
4 · (
√

10
√︀

ln(1/𝜖)) ·
√
𝑛, 41

√︂
𝑛

10
ln(4/𝜖)

}︂
= 3 · 41

√︂
𝑛

10
ln(4/𝜖) ≤ 41

√︀
𝑛 ln(1/𝜖).

Time to compute 𝑀𝑛,𝜃,𝜀. Computing 𝐴𝑛,𝜃,2𝑎 can be done in poly(𝑛) time as de-
scribed in Lemma 7.1, as can sampling �̃� from 𝑥. Given the three recursive 𝑀𝑛/10,𝜃′,𝜀/4

polynomials, we can then compute 𝑀𝑛,𝜃,𝜀 in three multiplications. Each recursive
polynomial has degree at most 𝑑(𝑛/10, 𝜀/4), and hence at most

∑︀𝑑(𝑛/10,𝜀/4)
𝑖=0

(︀
𝑛
𝑖

)︀
mono-

mials. Since the time for these multiplications dominates the time for the recursive
computations, the total time is �̃�(

∑︀𝑑(𝑛,𝜀)
𝑖=0

(︀
𝑛
𝑖

)︀
) using the fast Fourier transform1, as

desired.

Correctness. Now we prove that 𝑀𝑛,𝜃,𝜀 correctly simulates TH𝜃 with probability
at least 1 − 𝜀, on all possible inputs. We begin by citing a lemma explaining our
choice of the parameter 𝑎.

Lemma 7.4. If 𝑥 ∈ {0, 1}𝑛 with |𝑥|/𝑛 = 𝑤, and �̃� ∈ {0, 1}𝑛/10 is a vector each of
whose entries is an independent and uniformly random entry of 𝑥, with |�̃�|/(𝑛/10) =
𝑣, then for every 𝜀 < 1/4,

Pr
[︀
𝑣 ≤ 𝑤 − 𝑎/

√
𝑛
]︀
≤ 𝜀

4
,

where 𝑎 =
√

10 ·
√︀

ln(1/𝜖).
1By replacing each variable with increasing powers of a single variable, we can reduce multivariate

polynomial multiplication to single variable polynomial multiplication.
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Proof. Each entry of �̃� is drawn from a binomial distribution with probability 𝑤 of
giving a 1. Hence, applying Hoeffding’s inequality, Lemma 2.1 from the Preliminaries,
with 𝑝 = 𝑤, 𝑚 = 𝑛/10, and 𝑘 = 𝑛

10
(𝑤 − 𝑎/

√
𝑛) = 𝑛𝑤

10
− 𝑎

√
𝑛

10
yields:

Pr[𝑣 ≤ 𝑤 − 𝑎/
√
𝑛] = Pr

[︂
|�̃�| ≤ 𝑛𝑤

10
− 𝑎
√
𝑛

10

]︂
≤ exp

⎛⎜⎝−2

(︁
𝑎
√
𝑛

10

)︁2
𝑛
10

⎞⎟⎠ ,

which simplifies to exp
(︁
−𝑎2

5

)︁
= exp(−2 ln(1/𝜖)) = 𝜖2 < 𝜀

4
.

We now move on to the main proof of correctness, which proceeds by induction on
𝑛. By symmetry, we may assume we have an input vector 𝑥 ∈ {0, 1}𝑛 with |𝑥|/𝑛 ≥ 𝜃,
and we want to show that 𝑀𝑛,𝜃,𝜖(𝑥) outputs 1 with probability at least 1 − 𝜖. We
assume 𝜖 < 1/4 so that we may apply Lemma 7.4.

For notational convenience, define the intervals:

𝛼0 = [𝜃−𝑎/
√
𝑛, 𝜃], 𝛼1 = [𝜃, 𝜃+𝑎/

√
𝑛], 𝛽 = [𝜃+𝑎/

√
𝑛, 𝜃+2𝑎/

√
𝑛], 𝛾 = [𝜃+2𝑎/

√
𝑛, 1].

Note that depending on the values of 𝜃 and 𝑎, some of these intervals may be
empty; this is not a problem for our proof.

Let 𝑤 = |𝑥|/𝑛. Let �̃� be the random “subvector” of 𝑥 selected in 𝑀𝑛,𝜃,𝜖 (recall
we use the same �̃� in each of the three locations it appears in the definition of 𝑀).
Let 𝑣 = |�̃�|/(𝑛/10). Our proof strategy is to consider different cases depending on
the value of 𝑤. For each case, we show there are at most four events such that, if
all events hold then 𝑀𝑛,𝜃,𝜖 outputs the correct answer, and each event does not hold
with probability at most 𝜀

4
. By the union bound, this implies that 𝑀𝑛,𝜃,𝜖 gives the

correct answer with probability at least 1− 𝜖. The cases are as follows:

1. 𝑤 ∈ 𝛼1 (|𝑥|/𝑛 is “very close” to 𝜃). By Lemma 7.4, we know that with
probability at least 1− 𝜖

4
, we have 𝑣 ≥ 𝜃− 𝑎/

√
𝑛. In other words, 𝑣 ∈ 𝛼0 ∪𝛼1 ∪

𝛽 ∪ 𝛾.

∙ 𝑣 ∈ 𝛼0 ∪ 𝛼1, then with probability at least 1 − 2𝜖
4
, we have

𝑆𝑛/10,𝜃,𝑎/
√
𝑛,𝜖/4(�̃�) = 1, by our inductive assumption that 𝑆𝑛/10,𝜃,𝑎/

√
𝑛,𝜖/4 is

a probabilistic polynomial for NEAR𝜃,𝑎/
√
𝑛 with error probability at most

2𝜖
4
. In this case, 𝑀𝑛,𝜃,𝜖(𝑥) = 𝐴𝑛,𝜃,2𝑎(𝑥), which is 1 by definition of 𝐴.

∙ 𝑣 ∈ 𝛽∪𝛾, then with probability at least 1− 2𝜖
4
, we have 𝑆𝑛/10,𝜃,𝑎/

√
𝑛,𝜖/4(�̃�) =

0, in which case 𝑀𝑛,𝜃,𝜖(𝑥) = 𝑀𝑛/10,𝜃,𝜖/4(�̃�). But, by the inductive hypoth-
esis, this is 1 with probability at least 1− 𝜖

4
, since 𝑣 > 𝜃 in this case.

Since we are in one of these two cases with probability ≥ 1− 1
4
𝜖, and each gives

the correct answer with probability ≥ 1− 3𝜖
4
, the correct answer is given in this

case with probability ≥ 1− 𝜖.

2. 𝑤 ∈ 𝛽 (|𝑥|/𝑛 is “close” to 𝜃). In this case we have 𝑤 − 𝜃 ≤ 2𝑎/
√
𝑛, therefore

𝐴𝑛,𝜃,2𝑎(𝑥) = 1. Hence, if 𝑆𝑛/10,𝜃,𝑎/
√
𝑛,𝜖/4(�̃�) = 1 then 𝑀𝑛,𝜃,𝜖(𝑥) returns the correct
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answer. If 𝑆𝑛/10,𝜃,𝑎/
√
𝑛,𝜖/4(�̃�) = 0, then we return 𝑀𝑛/10,𝜃,𝜖/4(�̃�). By Lemma 7.4,

we have 𝑣 ≥ 𝜃 with probability at least 1− 𝜖
4
, and in this case, 𝑀𝑛/10,𝜃,𝜖/4(�̃�) = 1

with probability ≥ 1− 𝜖
4
. Hence, 𝑀 returns the correct value with probability

at least 1− 2𝜖
4
, no matter what the value of 𝑆𝑛/10,𝜃,𝑎/

√
𝑛,𝜖/4(𝑦) happens to be.

3. 𝑤 ∈ 𝛾 (|𝑥|/𝑛 is “far” from 𝜃). By Lemma 7.4, we have 𝑣 ∈ 𝛽∪𝛾 with probabil-
ity at least 1− 𝜖

4
. In this case, 𝑣 ≥ 𝜃, and so 𝑀𝑛/10,𝜃,𝜖/4(�̃�) = 1 with probability

≥ 1 − 𝜖
4
. Moreover, since 𝑣 /∈ 𝛼0 ∪ 𝛼1, it follows that 𝑆𝑛/10,𝜃,𝑎/

√
𝑛,𝜖/4(�̃�) = 0

with probability ≥ 1 − 2
4
𝜖, in which case 𝑀𝑛,𝜃,𝜖(𝑥) = 𝑀𝑛/10,𝜃,𝜖/4(�̃�). Overall,

𝑀𝑛,𝜃,𝜖(𝑥) = 𝑀𝑛/10,𝜃,𝜖/4(�̃�) = 1 with probability ≥ 1− 𝜖.

This completes the proof of correctness, and the proof of Theorem 7.2.

7.5 Further Probabilistic Polynomial Constructions
In this Section, we give two additional constructions of probabilistic polynomials
which strengthen Theorem 7.2 from the previous section. Both of them make use of
the following observation about the proof of correctness of Theorem 7.2: The only
randomness used by the construction is the sampled vector �̃� at each layer of the
recursion, and moreover, the polynomial will always give a correct answer as long as
||𝑥|/𝑛− |�̃�|/(𝑛/10)| < 𝑎/

√
𝑛 at each layer of recursion. This condition is true for the

probabilistic polynomial for TH𝜃 no matter what 𝜃 ∈ [0, 1] is.

7.5.1 Symmetric Functions

Recall that the Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} is symmetric if the value of
𝑓(𝑥) depends only on |𝑥|, the Hamming weight of 𝑥. We now describe how to use
the probabilistic polynomial for TH𝜃 to derive a probabilistic polynomial for any
symmetric function with the same degree as TH𝜃:

Theorem 7.3. Every symmetric function 𝑓 : {0, 1}𝑛 → {0, 1} on 𝑛 variables has a
probabilistic polynomial of 𝑂(

√︀
𝑛 log(1/𝜖)) degree and error 𝜖 over Z.

Proof. For every 0 ≤ 𝑖 ≤ 𝑛, let 𝑓𝑖 ∈ {0, 1} denote the value of 𝑓(𝑥) when 𝑥 has
Hamming weight 𝑖. Define:

𝐴 = {0 < 𝑖 ≤ 𝑛 | 𝑓𝑖 = 1 and 𝑓𝑖−1 = 0},

𝐵 = {0 < 𝑖 ≤ 𝑛 | 𝑓𝑖 = 0 and 𝑓𝑖−1 = 1}.

Then, 𝑓 can be written exactly as:

𝑓(𝑥) = 𝑓0 +
∑︁
𝑖∈𝐵

TH𝑖/𝑛(𝑥)−
∑︁
𝑗∈𝐴

TH𝑗/𝑛(𝑥). (7.2)

We replace each TH𝜃 in (7.2) with a probabilistic polynomial of Theorem 7.2 with
error 𝜖. However, we make sure that in all of the different probabilistic polynomials for
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TH𝜃, we make the same choice for the sampled vector �̃� at each layer of recursion. We
can then apply the proof of Theorem 7.2, to see that every one of the TH𝜃 probabilistic
polynomials will give the correct answer as long as ||𝑥|/𝑛− |�̃�|/(𝑛/10)| < 𝑎/

√
𝑛 at

each of the log10(𝑛) layers of recursion (this is a property only of the sampling, and
independent of 𝜃). Just as in the original proof, this will happen with error at most
𝜀, as desired.

7.5.2 Derandomization

The polynomial for TH𝜃 in Theorem 7.2 used Θ(𝑛) random bits in order to randomly
sample �̃� from 𝑥 at each layer of recursion. In this subsection, we show it can be
implemented using only polylog(𝑛, 𝑠) random bits. The key will be to sample �̃�
with limited independence, combined with a Chernoff bound for bits with limited
independence (Lemma 2.2 from the Preliminaries). In particular, we use the following
strengthening of Lemma 7.4 from the previous Section:

Lemma 7.5. If 𝑥 ∈ {0, 1}𝑛 with |𝑥|/𝑛 = 𝑤, and �̃� ∈ {0, 1}𝑛/10 is a vector each of
whose entries is 𝑘-wise independently chosen entry of 𝑥, where 𝑘 = ⌊20𝑒−1/3 log(1/𝜖)⌋,
with |�̃�|/(𝑛/10) = 𝑣, then for every 𝜀 < 1/4,

Pr

[︂
𝑣 ≤ 𝑤 − 𝑎√

𝑛

]︂
≤ 𝜀

4
,

where 𝑎 =
√

10 ·
√︀

ln(1/𝜖).

Proof. Apply Lemma 2.2 with 𝑋 = |�̃�|, 𝜇 = E[|�̃�|] = 𝑤𝑛, and 𝛿 =
√︀

40 log(1/𝜖)/𝑛.

Theorem 7.4. For any 0 ≤ 𝜃 ≤ 1, there is a probabilistic polynomial for the threshold
function TH𝜃 of degree 𝑂(

√︀
𝑛 log 1/𝜀) on 𝑛 bits with error 𝜀 that can be randomly

sampled using 𝑂(log(𝑛) log(𝑛/𝜀)) random bits.

Proof. We follow the construction of Theorem 7.2 exactly, with only one modification.
In the original proof, �̃� was a sample of 𝑛/10 bits of 𝑥, chosen independently at ran-
dom. Here, we instead pick �̃� to be a sample of 𝑛/10 bits chosen 𝑘-wise independently,
for 𝑘 = ⌊20𝑒−1/3 log(1/𝜖)⌋.

The only requirement of the randomness in the proof of Theorem 7.2 is that it
satisfies Lemma 7.4, a concentration inequality for sampling �̃� from 𝑥. Our new
Lemma 7.5 is identical to Lemma 7.4, except that it replaces the old method of
sampling �̃� with new 𝑘-wise sampling; the remainder of the proof of correctness is
exactly as before.

Recall that in our recursive polynomial construction, we divide 𝑛 by 10 and divide
𝜖 by 4 each time we move from one recursive layer to the next. At the 𝑗th recursive
level of our construction, for 1 ≤ 𝑗 < log10(𝑛), we thus need to 𝑂(log(4𝑗/𝜖))-wise
independently sample 𝑛/10𝑗 entries from a vector of length 𝑛/10𝑗−1. Summing across
all of the layers, we need a total of 𝑂(𝑛) samples from a 𝑘-wise independent space,
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where 𝑘 is never more than 𝑂(log(𝑛/𝜖)). This can be done all together using 𝑂(𝑛)
samples from {1, 2, . . . , 𝑛} which are 𝑂(log(𝑛/𝜖))-wise independent. Using standard
constructions2, this requires 𝑂(log(𝑛) log(𝑛/𝜖)) random bits.

7.6 PTFs for ORs of Threshold Functions

The primary way we will apply our probabilistic polynomial for the threshold function
TH𝜃 in the next Chapter is to efficiently compute ORs of thresholds. Suppose any
Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} has a probabilistic polynomial 𝒫 of degree 𝑑
and error 𝜀 over any commutative ring 𝑅. Then, for any 𝑠 ∈ N, we can construct a
probabilistic polynomial for OR𝑠 ∘ 𝑓 , the OR of 𝑠 independent copies of 𝑓 , of degree
𝑠 · 𝑑 and error at most 𝑠 · 𝜀: On input 𝑥(1), 𝑥(2), . . . , 𝑥(𝑠) ∈ {0, 1}𝑛, we compute⋁︀

𝑖∈[𝑠] 𝑓(𝑥(𝑖)) by drawing a 𝑝 ∼ 𝒫 , letting 𝑞 : 𝑅𝑠 → 𝑅 be the exact polynomial for OR𝑠

of degree 𝑠, and outputting 𝑞(𝑝(𝑥(1)), 𝑝(𝑥(2)), . . . , 𝑝(𝑥(𝑠))). Indeed, by a union bound,
the polynomial 𝑝(𝑥(𝑖)) for each 𝑖 ∈ [𝑠] will give the correct answer with error at most
𝑠 · 𝜀, and so 𝑞 will exactly compute the OR.

When 𝑅 has characteristic 0 (say, for instance, 𝑅 = R), we can do even better:
we can construct a ‘probabilistic polynomial’ for OR𝑠 ∘𝑓 of degree only 𝑑 and error at
most 𝑠·𝜀, by outputting 𝑝(𝑥(1))+𝑝(𝑥(2))+· · ·+𝑝(𝑥(𝑠))−1. With error at most 𝑠·𝜀, this
polynomial will output −1 when the OR𝑠 ∘ 𝑓 is false, and a nonnegative value when
it is true. This is not a probabilistic polynomial for OR𝑠 ∘ 𝑓 as we defined it earlier,
since it only outputs a nonnegative value in the ‘true’ case, rather than necessarily
outputting 1. However, this ‘thresholding’ behavior between true and false values
still allows us to determine whether the OR𝑠 ∘ 𝑓 was true or false.

Inspired by this remark, in this Section, we show how to construct low-degree
polynomial threshold functions (PTFs) representing TH𝜃 that have good threshold
behavior, and consequently obtain low-degree PTFs for an OR of many threshold
functions. By only aiming for such thresholding behavior, we will be able to further
decrease the degree of our polynomial representations of TH𝜃.

Definition 7.4. A polynomial threshold function (PTF) for the Boolean function
𝑓 : {0, 1}𝑛 → {0, 1} is a polynomial 𝑝 : {0, 1}𝑛 → R such that, for every 𝑥 ∈ {0, 1}𝑛,
we have 𝑝(𝑥) ≥ 0 if 𝑓(𝑥) = 1, and 𝑝(𝑥) < 0 if 𝑓(𝑥) = 0. The PTF degree of 𝑓 is the
minimum degree of a PTF for 𝑓 .

Example 7.2. The function TH𝜃 has PTF degree 1, via the PTF 𝑝(𝑥1, . . . , 𝑥𝑛) =
𝑥1 + · · · + 𝑥𝑛 − 𝜃 · 𝑛. However, it is unclear how to use this to construct a PTF for
OR𝑠 ∘ TH𝜃; we will need a PTF with better thresholding behavior for TH𝜃 for this.

2For example, one can pick a uniformly random degree 𝑘 (single-variable) polynomial over F𝑞 for
some prime power 𝑞 ≥ 𝑛, and output its values on 𝑛 distinct points from F𝑞.
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7.6.1 Deterministic Construction

We begin by reviewing some basic facts about Chebyshev polynomials. The degree-𝑞
Chebyshev polynomial of the first kind is

𝑇𝑞(𝑥) :=

⌊𝑞/2⌋∑︁
𝑖=0

(︂
𝑞

2𝑖

)︂
(𝑥2 − 1)𝑖𝑥𝑞−2𝑖.

Fact 7.1. For any 𝜀 ∈ (0, 1),

∙ if 𝑥 ∈ [−1, 1], then |𝑇𝑞(𝑥)| ≤ 1;

∙ if 𝑥 ∈ (1, 1 + 𝜀), then 𝑇𝑞(𝑥) > 1;

∙ if 𝑥 ≥ 1 + 𝜀, then 𝑇𝑞(𝑥) ≥ 1
2
𝑒𝑞

√
𝜀.

Proof. The first property easily follows from the known formula 𝑇𝑞(𝑥) =
cos(𝑞 arccos(𝑥)) for 𝑥 ∈ [−1, 1]. The second and third properties follow from an-
other known formula 𝑇𝑞(𝑥) = cosh(𝑞 arcosh(𝑥)) for 𝑥 > 1, which for 𝑥 ≥ 1 + 𝜀 implies
𝑇𝑞(𝑥) ≥ cosh(𝑞

√
𝜀) = 1

2
(𝑒𝑞

√
𝜀 + 𝑒−𝑞

√
𝜀).

In certain scenarios, we obtain slightly better results using a (lesser known) family
of discrete Chebyshev polynomials defined as follows [Hir03, page 59]:

𝐷𝑞,𝑡(𝑥) :=

𝑞∑︁
𝑖=0

(−1)𝑖
(︂
𝑞

𝑖

)︂(︂
𝑡− 𝑥
𝑞 − 𝑖

)︂(︂
𝑥

𝑖

)︂
.

(See also [Sze75, pages 33–34] or Chebyshev’s original paper [Che99] with an essen-
tially equivalent definition up to rescaling.)

Fact 7.2. Let 𝑐𝑞,𝑡 = (𝑡+ 1)𝑞+1/𝑞!. For all 𝑡 > 𝑞 ≥
√︀

8(𝑡+ 1) ln(𝑡+ 1),

∙ if 𝑥 ∈ {0, 1, . . . , 𝑡}, then |𝐷𝑞,𝑡(𝑥)| ≤ 𝑐𝑞,𝑡;

∙ if 𝑥 ≤ −1, then 𝐷𝑞,𝑡(𝑥) ≥ 𝑒𝑞
2/(8(𝑡+1))𝑐𝑞,𝑡.

Proof. From [Hir03, page 61],

𝑡∑︁
𝑘=0

𝐷𝑞,𝑡(𝑘)2 =

(︂
2𝑞

𝑞

)︂(︂
𝑡+ 1 + 𝑞

2𝑞 + 1

)︂
=

2𝑞(2𝑞 − 1) · · · 𝑞
𝑞(𝑞 − 1) · · · 1

· (𝑡+ 1 + 𝑞)(𝑡+ 𝑞) · · · (𝑡+ 1− 𝑞)
(2𝑞 + 1)(2𝑞) · · · 1

=
(𝑡+ 1)((𝑡+ 1)2 − 12)((𝑡+ 1)2 − 22) · · · ((𝑡+ 1)2 − 𝑞2)

(2𝑞 + 1)(𝑞!)2

≤ (𝑡+ 1)2𝑞+2

(𝑞!)2
.

Thus, for every integer 𝑥 ∈ [0, 𝑡], we have |𝐷𝑞,𝑡(𝑥)| ≤ (𝑡+ 1)𝑞+1/𝑞! = 𝑐𝑞,𝑡.
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For 𝑥 ≤ −1, we have (−1)𝑖
(︀
𝑥
𝑖

)︀
= (−𝑥)(−𝑥+1)···(−𝑥+𝑖−1)

1·2···𝑖 ≥ 1, and by the Chu–
Vandermonde identity,

𝐷𝑞,𝑡(𝑥) ≥
𝑞∑︁

𝑖=0

(︂
𝑞

𝑖

)︂(︂
𝑡+ 1

𝑞 − 𝑖

)︂
=

(︂
𝑡+ 1 + 𝑞

𝑞

)︂
=

(𝑡+ 1)𝑞(1 + 1
𝑡+1

)(1 + 2
𝑡+1

) · · · (1 + 𝑞
𝑡+1

)

𝑞!

≥ 𝑐𝑞,𝑡
𝑡+ 1

𝑒
1+2+···+𝑞

2(𝑡+1) = 𝑒𝑞(𝑞+1)/(4(𝑡+1))−ln(𝑡+1)𝑐𝑞,𝑡 ≥ 𝑒𝑞
2/(8(𝑡+1))𝑐𝑞,𝑡.

Using the Chebyshev polynomials and the Discrete Chebyshev polynomials, we
can design PTFs for TH𝜃 with ‘nice’ thresholding behavior. Our construction also
extends to ‘approximate threshold functions’, where there is a middle range of input
values between the ‘true’ and ‘false’ inputs where we are allowed to output any value.
Our construction involves two parameters: 𝑠, which corresponds to the number of
different copies of the threshold function whose OR we want to take, and 𝜀, the ‘gap’
in the approximate threshold.

Theorem 7.5. We can construct a polynomial 𝑃𝑠,𝑡,𝜀 : R→ R of degree 𝑂(
√︀

1/𝜀 log 𝑠),
such that

∙ if 𝑥 ∈ {0, 1, . . . , 𝑡}, then |𝑃𝑠,𝑡,𝜀(𝑥)| ≤ 1;

∙ if 𝑥 ∈ (𝑡, (1 + 𝜀)𝑡), then 𝑃𝑠,𝑡,𝜀(𝑥) > 1;

∙ if 𝑥 ≥ (1 + 𝜀)𝑡, then 𝑃𝑠,𝑡,𝜀(𝑥) ≥ 𝑠.

For the “exact” setting with 𝜀 = 1/𝑡, we can alternatively bound the degree by
𝑂(
√︀
𝑡 log(𝑠𝑡)).

Proof. Set 𝑃𝑠,𝑡,𝜀(𝑥) := 𝑇𝑞(𝑥/𝑡), where 𝑇𝑞 is the Chebyshev polynomial, for a parame-
ter 𝑞 to be determined. The first two properties are obvious from Fact 7.1. On the
other hand, if 𝑥 ≥ (1 + 𝜀)𝑡, then Fact 7.1 shows that 𝑃𝑠,𝑡,𝜀(𝑥) ≥ 1

2
𝑒𝑞

√
𝜀 ≥ 𝑠, provided

we set 𝑞 =
⌈︁√︀

1/𝜀 ln(2𝑠)
⌉︁
. This achieves 𝑂(

√︀
1/𝜀 log 𝑠) degree.

When 𝜀 = 1/𝑡 the above yields 𝑂(
√
𝑡 log 𝑠) degree; we can reduce the log 𝑠 factor

by instead defining 𝑃𝑠,𝑡,𝜀(𝑥) := 𝐷𝑞,𝑡(𝑡 − 𝑥)/𝑐𝑞,𝑡. Now, if 𝑥 ≥ 𝑡 + 1, then 𝑃𝑠,𝑡,𝜀(𝑥) ≥
𝑒𝑞

2/(8(𝑡+1)) ≥ 𝑠 by setting 𝑞 =
⌈︁√︀

8(𝑡+ 1) ln(max{𝑠, 𝑡+ 1})
⌉︁
.

Using Theorem 7.5, we can construct a low-degree PTF for computing an OR of
𝑠 thresholds of 𝑛 bits:

Corollary 7.3. Given 𝑛, 𝑠, 𝑡, 𝜀, we can construct a polynomial 𝑃 : {0, 1}𝑛𝑠 → R of
degree at most ∆ := 𝑂(

√︀
1/𝜀 log 𝑠) and at most 𝑠 ·

(︀
𝑛
Δ

)︀
monomials, such that

∙ if
⋁︀𝑠

𝑖=1

[︁∑︀𝑛
𝑗=1 𝑥𝑖𝑗 > 𝑡

]︁
is false, then |𝑃 (𝑥11, . . . , 𝑥1𝑛, . . . , 𝑥𝑠1, . . . , 𝑥𝑠𝑛)| ≤ 𝑠;
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∙ if
⋁︀𝑠

𝑖=1

[︁∑︀𝑛
𝑗=1 𝑥𝑖𝑗 ≥ 𝑡+ 𝜀𝑛

]︁
is true, then 𝑃 (𝑥11, . . . , 𝑥1𝑛, . . . , 𝑥𝑠1, . . . , 𝑥𝑠𝑛) > 2𝑠.

For the exact setting with 𝜀 = 1/𝑛, we can alternatively bound ∆ by 𝑂(
√︀
𝑛 log(𝑛𝑠)).

Proof. Define 𝑃 (𝑥11, . . . , 𝑥1𝑛, . . . , 𝑥𝑠1, . . . , 𝑥𝑠𝑛) :=
∑︀𝑠

𝑖=1 𝑃𝑛,3𝑠,𝑡,𝜀

(︁∑︀𝑛
𝑗=1 𝑥𝑖𝑗

)︁
, where

𝑃𝑛,3𝑠,𝑡,𝜀 is from Theorem 7.5. It is not hard to see that the stated properties hold. (In
the second case, the output is at least 3𝑠− (𝑠− 1) > 2𝑠.)

7.6.2 Probabilistic Construction

Finally, we give our last polynomial construction, by combining the PTF from Theo-
rem 7.5 from the previous Subsection with our probabilistic polynomial for TH𝜃 from
Theorem 7.2 above. We will construct a distribution of PTFs to randomly draw from,
which will allow us to achieve noticeably lower degree than either the PTFs from the
previous section, or the probabilistic polynomial from before.

Definition 7.5. For any 𝜀 ∈ [0, 1], a probabilistic PTF with error 𝜀 and degree
𝑑 for the Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} is a distribution 𝒫 on polynomials
𝑝 : {0, 1}𝑛 → R of degree at most 𝑑 over R such that, for every 𝑥 ∈ {0, 1}𝑛, we have

∙ If 𝑓(𝑥) = 1, then Pr𝑝∼𝒫 [𝑝(𝑥) ≥ 0] ≥ 1− 𝜀, and

∙ If 𝑓(𝑥) = 0, then Pr𝑝∼𝒫 [𝑝(𝑥) < 0] ≥ 1− 𝜀.

The 𝜀-probabilistic PTF degree of 𝑓 is the minimum degree of a probabilistic PTF
with error 𝜀 for 𝑓 .

Our construction will use a ‘random sampling’ approach similar to Theorem 7.2
from before.
Restatement of Theorem 7.2 We can construct a distribution 𝒬𝑛,𝑠,𝑡 on polynomials
𝑄𝑛,𝑠,𝑡 : {0, 1}𝑛 → R of degree 𝑂(

√
𝑛 log 𝑠), such that for every 𝑥 ∈ {0, 1}𝑛, when we

draw a random 𝑄𝑛,𝑠,𝑡 ∼ 𝒬𝑛,𝑠,𝑡:

∙ if
∑︀𝑛

𝑖=1 𝑥𝑖 ≤ 𝑡, then 𝑄𝑛,𝑠,𝑡(𝑥1, . . . , 𝑥𝑛) = 0 with probability at least 1− 1/𝑠;

∙ if
∑︀𝑛

𝑖=1 𝑥𝑖 > 𝑡, then 𝑄𝑛,𝑠,𝑡(𝑥1, . . . , 𝑥𝑛) = 1 with probability at least 1− 1/𝑠.

Theorem 7.6. We can construct a distribution ℒ𝑛,𝑠,𝑡,𝜀 on polynomials 𝐿𝑛,𝑠,𝑡,𝜀 :
{0, 1}𝑛 → R of degree 𝑂((1/𝜀)1/3 log 𝑠), such that for every 𝑥 ∈ {0, 1}𝑛, when we
draw a random 𝐿𝑛,𝑠,𝑡,𝜀 ∼ ℒ𝑛,𝑠,𝑡,𝜀:

∙ if
∑︀𝑛

𝑖=1 𝑥𝑖 ≤ 𝑡, then |𝐿𝑛,𝑠,𝑡,𝜀(𝑥1, . . . , 𝑥𝑛)| ≤ 1 with probability at least 1− 1/𝑠;

∙ if
∑︀𝑛

𝑖=1 𝑥𝑖 ∈ (𝑡, 𝑡 + 𝜀𝑛), then 𝐿𝑛,𝑠,𝑡,𝜀(𝑥1, . . . , 𝑥𝑛) > 1 with probability at least
1− 1/𝑠;

∙ if
∑︀𝑛

𝑖=1 𝑥𝑖 ≥ 𝑡+𝜀𝑛, then 𝐿𝑛,𝑠,𝑡,𝜀(𝑥1, . . . , 𝑥𝑛) ≥ 𝑠 with probability at least 1−1/𝑠.
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For the “exact” setting with 𝜀 = 1/𝑛, we can alternatively bound the degree by
𝑂(𝑛1/3 log2/3(𝑛𝑠)).

Proof. Let 𝑟 and 𝑞 be parameters to be set later. Draw a random sample 𝑅 ⊆
{1, . . . , 𝑛} of size 𝑟. Let

𝑡𝑅 :=
𝑡𝑟

𝑛
− 𝑐0

√︀
𝑟 log 𝑠 and 𝑡− := 𝑡− 2𝑐0

(︂
𝑛√
𝑟

)︂√︀
log 𝑠

for a sufficiently large constant 𝑐0. Define

𝐿𝑛,𝑠,𝑡,𝜀(𝑥1,...,𝑥𝑑) := 𝑄𝑟,2𝑠,𝑡𝑅({𝑥𝑖}𝑖∈𝑅) · 𝑃𝑠,𝑡′,𝜀′

(︃
𝑛∑︁

𝑖=1

𝑥𝑖 − 𝑡−
)︃
,

where 𝑃𝑠,𝑡′,𝜀′ is the polynomial from Theorem 7.5, with 𝑡′ := 𝑡 − 𝑡− =
Θ((𝑛/

√
𝑟)
√

log 𝑠) and 𝜀′ := 𝜀𝑛/𝑡′ = Θ(𝜀
√
𝑟/
√

log 𝑠), and 𝑄𝑟,2𝑠,𝑡𝑅 is a polynomial
drawn from 𝒬𝑟,2𝑠,𝑡𝑅 from Theorem 7.2.

To verify the stated properties, consider three cases:

∙ Case 1:
∑︀𝑛

𝑖=1 𝑥𝑖 < 𝑡−. By a Chernoff bound, with probability at least 1 −
1/(2𝑠), we have

∑︀
𝑖∈𝑅 𝑥𝑖 < 𝑡−𝑟/𝑛 + 𝑐0

√
𝑟 log 𝑠 ≤ 𝑡𝑅 (assuming that 𝑟 ≥ log 𝑠).

Thus, with probability at least 1 − 1/𝑠, we have 𝑄𝑛,2𝑠,𝑡𝑅({𝑥𝑖}𝑖∈𝑅) = 0 and so
𝐿𝑛,𝑠,𝑡,𝜀(𝑥1, . . . , 𝑥𝑛) = 0.

∙ Case 2:
∑︀𝑛

𝑖=1 𝑥𝑖 ∈ [𝑡−, 𝑡]. With probability at least 1 − 1/𝑠, we have
𝑄𝑟,2𝑠,𝑡𝑅({𝑥𝑖}𝑖∈𝑅) ∈ {0, 1} and so |𝐿𝑛,𝑠,𝑡,𝜀(𝑥1, . . . , 𝑥𝑛)| ≤ 1.

∙ Case 3:
∑︀𝑛

𝑖=1 𝑥𝑖 > 𝑡. By a Chernoff bound, with probability at least 1−1/(2𝑠),
we have

∑︀
𝑖∈𝑅 𝑥𝑖 ≥ 𝑡𝑟/𝑛 + 𝑐0

√
𝑟 log 𝑠 = 𝑡𝑅. Thus, with probability at least

1−1/𝑠, we have𝑄𝑟,2𝑠,𝑡𝑅({𝑥𝑖}𝑖∈𝑅) = 1 and so 𝐿𝑛,𝑠,𝑡,𝜀(𝑥1, . . . , 𝑥𝑛) > 1 for
∑︀𝑛

𝑖=1 𝑥𝑖 ∈
(𝑡, 𝑡+ 𝜀𝑛), or 𝐿𝑛,𝑠,𝑡,𝜀(𝑥1, . . . , 𝑥𝑛) ≥ 𝑠 for

∑︀𝑛
𝑖=1 𝑥𝑖 ≥ 𝑡+ 𝜀𝑛.

The degree of 𝐿𝑛,𝑠,𝑡,𝜀 is

𝑂

(︂√︀
𝑟 log 𝑠+

√︁
(1/(𝜀

√
𝑟))
√︀

log 𝑠 log 𝑠

)︂
and we can set 𝑟 =

⌈︀
(1/𝜀)2/3 log 𝑠

⌉︀
. For the exact setting, the degree is

𝑂

(︂√︀
𝑟 log 𝑠+

√︁
(𝑛/
√
𝑟)
√︀

log 𝑠 · log(𝑛𝑠)

)︂
and we can set 𝑟 =

⌈︁
𝑛2/3 log1/3(𝑛𝑠)

⌉︁
.

Remark 7.1. Using the same techniques as in Theorem 7.4, we can sample a prob-
abilistic polynomial from Theorem 7.6 with only 𝑂(log(𝑛) log(𝑛𝑠)) random bits.

Finally, we can construct a probabilistic PTF for an OR of thresholds:
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Corollary 7.4. Given 𝑛, 𝑠, 𝑡, 𝜀, we can construct a distribution ℒ on polynomials
𝐿 : {0, 1}𝑛𝑠 → R of degree at most ∆ := 𝑂((1/𝜀)1/3 log 𝑠) with at most 𝑠 ·

(︀
𝑛
Δ

)︀
monomials, such that
∙ if

⋁︀𝑠
𝑖=1

[︁∑︀𝑛
𝑗=1 𝑥𝑖𝑗 ≥ 𝑡

]︁
is false, then |𝐿(𝑥11, . . . , 𝑥1𝑛, . . . , 𝑥𝑠1, . . . , 𝑥𝑠𝑛)| ≤ 𝑠 with

probability at least 2/3;
∙ if

⋁︀𝑠
𝑖=1

[︁∑︀𝑑
𝑗=1 𝑥𝑖𝑗 ≥ 𝑡+ 𝜀𝑛

]︁
is true, then 𝐿(𝑥11, . . . , 𝑥1𝑛, . . . , 𝑥𝑠1, . . . , 𝑥𝑠𝑛) > 2𝑠

with probability at least 2/3.
For the exact setting with 𝜀 = 1/𝑛, we can alternatively bound ∆ by 𝑂(𝑛1/3 log2/3(𝑛𝑠)).

Proof. Draw 𝐿𝑛,3𝑠,𝑡,𝜀 ∼ ℒ𝑛,3𝑠,𝑡,𝜀 from the distribution from Theorem 7.6, then define
𝐿(𝑥11, . . . , 𝑥1𝑛, . . . , 𝑥𝑠1, . . . , 𝑥𝑠𝑛) :=

∑︀𝑠
𝑖=1 𝐿𝑛,3𝑠,𝑡,𝜀(𝑥𝑖1, . . . , 𝑥𝑖𝑛).

Remark 7.2. The coefficients of the polynomials from Theorem 7.2 are poly(𝑛)-
bit integers, and it can be checked that the coefficients of all our deterministic and
probabilistic PTFs are rational numbers with poly(𝑛)-bit numerators and a common
poly(𝑛)-bit denominator, and that the same bound for the number of monomials
holds for the construction time, up to poly(𝑛) factors. That is, computations with
these polynomials have low computational overhead relative to 𝑛.
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Chapter 8

Algorithmic Applications

8.1 Sparse Polynomials and Rectangular Matrix
Multiplication

In this Chapter, we give new algorithmic applications of the polynomials we con-
structed in the previous chapter. Because of the prevalence of threshold functions
throughout algorithms and complexity, we will be able to apply them in a variety
of settings: nearest neighbor search, high-dimensional computational geometry, the
Light Bulb problem from data science, MAX-SAT, circuit SAT, and threshold circuit
lower bounds.

A key insight in many of the applications is a way to quickly evaluate a sparse
polynomial (i.e. a polynomial with few monomials) on a combinatorial rectangle of
inputs by using rectangular matrix multiplication. This makes use of the following
simple reduction from evaluating a polynomial to computing an inner product:

Proposition 8.1. For 𝑑 ∈ N, and any commutative ring 𝑅, let 𝑝 : 𝑅2𝑑 → 𝑅 be any
polynomial with 𝑡 monomials. Then, there are maps 𝜑, 𝜓 : 𝑅𝑑 → 𝑅𝑡 such that, for
any 𝑥, 𝑦 ∈ 𝑅𝑑, we have 𝑝(𝑥, 𝑦) = ⟨𝜑(𝑥), 𝜓(𝑦)⟩. Moreover, if 𝑝 has degree ∆, then 𝜑
and 𝜓 can be computed in 𝑂(𝑡 ·∆) arithmetic operations over 𝑅.

Proof. Since 𝑝 has 𝑡 monomials, there are maps 𝑎 : [𝑑]× [𝑡]→ N∪ {0}, 𝑏 : [𝑑]× [𝑡]→
N ∪ {0}, and 𝑐 : [𝑡]→ 𝑅 such that

𝑝(𝑥, 𝑦) =
𝑡∑︁

ℓ=1

𝑐(ℓ) ·

(︃
𝑑∏︁

𝑖=1

𝑥
𝑎(𝑖,ℓ)
𝑖

)︃
·

(︃
𝑑∏︁

𝑗=1

𝑦
𝑏(𝑗,ℓ)
𝑗

)︃
.

We define 𝜑 : 𝑅𝑑 → 𝑅𝑡, for ℓ ∈ [𝑡], by:

𝜑(𝑥)ℓ := 𝑐(ℓ) ·

(︃
𝑑∏︁

𝑖=1

𝑥
𝑎(𝑖,ℓ)
𝑖

)︃
.
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Similarly define 𝜓 : 𝑅𝑑 → 𝑅𝑡, for ℓ ∈ [𝑡], by:

𝜓(𝑦)ℓ :=

(︃
𝑑∏︁

𝑗=1

𝑦
𝑏(𝑗,ℓ)
𝑗

)︃
.

We can see that 𝑝(𝑥, 𝑦) = ⟨𝜑(𝑥), 𝜓(𝑦)⟩ as desired.

By combining Proposition 8.1 with rectangular matrix multiplication algorithms,
we can quickly evaluate sparse polynomials on many pairs of inputs; such a technique
was first used in [Wil14a], and also implicitly in [Wil14c].

Proposition 8.2. For 𝑑 ∈ N, and any commutative ring 𝑅, let 𝑝 : 𝑅2𝑑 → 𝑅 be
any polynomial of degree ∆ with 𝑡 monomials. Given as input two sets 𝐴,𝐵 ⊆ 𝑅𝑑,
using 𝑂((|𝐴| + |𝐵|) · 𝑡 ·∆) arithmetic operations over 𝑅, we can reduce the problem
of evaluating 𝑝 on all pairs (𝑥, 𝑦) ∈ 𝐴 × 𝐵 to the problem of |𝐴| × 𝑡 × |𝐵| matrix
multiplication over 𝑅.

Proof. Letting 𝜑, 𝜓 : 𝑅𝑑 → 𝑅𝑡 be the maps from Proposition 8.1, we compute 𝜑(𝑥) for
each 𝑥 ∈ 𝐴, and 𝜓(𝑦) for each 𝑦 ∈ 𝐵, then multiply the resulting two matrices.

We will typically apply Proposition 8.2 in conjunction with Coppersmith’s very
efficient rectangular matrix multiplication algorithm:

Lemma 8.1 ([Cop82]). For all sufficiently large 𝑁 , multiplication of an 𝑁 × 𝑁 .172

matrix with an 𝑁 .172 ×𝑁 matrix can be done in 𝑂(𝑁2 log2𝑁) arithmetic operations
over any field.

Such a rectangular matrix multiplication algorithm requires some care; simply
applying the idea from Proposition 4.1 above to Coppersmith’s rank expression would
yield an algorithm which uses 𝑂(𝑁2+𝜀) arithmetic operations for any 𝜀 > 0. A proof
of how one can perform only 𝑂(𝑁2 log2𝑁) arithmetic operations can be found in the
appendix of [Wil14b]. We will typically use this approach when 𝑅 is either a finite
field, or else R but with relatively small coefficients, so that the arithmetic operations
can be performed in polylog(𝑛) time:

Lemma 8.2 ([Wil14a]). Given a polynomial 𝑃 (𝑥1, . . . , 𝑥𝑑, 𝑦1, . . . , 𝑦𝑑) with at most
𝑛0.17 monomials such that either:

∙ 𝑃 is over a finite field F𝑞 with 𝑞 ≤ polylog(𝑛), or

∙ 𝑃 is over R, and all its coefficients are polylog(𝑛)-bit numbers,

then given two sets of 𝑛 inputs 𝐴 = {𝑎1, . . . , 𝑎𝑛} ⊆ {0, 1}𝑑, 𝐵 = {𝑏1, . . . , 𝑏𝑛} ⊆
{0, 1}𝑑, we can evaluate 𝑃 on all pairs (𝑎𝑖, 𝑏𝑗) ∈ 𝐴×𝐵 in �̃�(𝑛2 + 𝑑 · 𝑛1.17) time.
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8.2 Exact Batch Nearest Neighbor Search
We now apply our polynomial constructions to solve the exact batch nearest neighbor
problem. We begin by focusing on the related closest pair problem.

Let 𝑀 be a metric on {0, 1}𝑑. We define the Bichromatic 𝑀-Metric Closest
Pair problem to be: given an integer 𝑘 and a collection of “red” and “blue” vectors
in {0, 1}𝑑, determine if there is a pair of red and blue vectors with distance at most 𝑘
under metric 𝑀 . This problem arises frequently in algorithms on a metric space 𝑀 .
In what follows, we shall assume that the metric 𝑀 can be computed on two points
of 𝑑 dimensions in time poly(𝑑). Define the Boolean function

𝑀 -dist𝑘(𝑥1,1, . . . , 𝑥1,𝑑, . . . , 𝑥𝑠,1, . . . , 𝑥𝑠,𝑑, 𝑦1,1, . . . , 𝑦1,𝑑, . . . , 𝑦𝑠,1, . . . , 𝑦𝑠,𝑑)

:=
⋁︁

𝑖,𝑗=1,...,𝑠

[𝑀(𝑥𝑖,1, . . . , 𝑥𝑖,𝑑, 𝑦𝑗,1, . . . , 𝑦𝑗,𝑑) ≤ 𝑘].

That is, 𝑀 -dist𝑘 takes two collections of 𝑠 vectors as input, and outputs 1 if and only
if there is a pair of vectors (one from each collection) that have distance at most 𝑘
under metric 𝑀 . For example, the Hamming-dist𝑘 function tests if there is a pair of
vectors with Hamming distance at most 𝑘.

We observe that sparse probabilistic polynomials for computing 𝑀 -dist𝑘 imply
subquadratic time algorithms for finding close bichromatic pairs in metric 𝑀 .

Theorem 8.1. Suppose for all 𝑘, 𝑑, and 𝑛, there is an 𝑠 = 𝑠(𝑑, 𝑛) such that 𝑀-dist𝑘
on 2𝑠𝑑 variables has a probabilistic PTF with at most 𝑛0.17 monomials, polylog(𝑛)-bit
coefficients, and error at most 1/3, where each sample can be produced in �̃�(𝑛2/𝑠2)
time. Then Bichromatic 𝑀-Metric Closest Pair on 𝑛 vectors in 𝑑 dimensions
can be solved in �̃�(𝑛2/𝑠2 + 𝑠2 · poly(𝑑)) randomized time.

Proof. We have an integer 𝑘 and sets 𝑅,𝐵 ⊆ {0, 1}𝑑 such that |𝑅| = |𝐵| = 𝑛, and
wish to determine if there is a 𝑢 ∈ 𝑅 and 𝑣 ∈ 𝐵 such that 𝑀(𝑢, 𝑣) ≤ 𝑘. First,
partition both 𝑅 and 𝐵 into ⌈𝑛/𝑠⌉ groups, with at most 𝑠 vectors in each group. By
assumption, for all 𝑘, there is a probabilistic PTF for 𝑀 -dist𝑘 with 2𝑠𝑑 variables, 𝑛0.17

monomials, polylog(𝑛)-bit coefficients, and error at most 1/3. Let 𝑝 be a polynomial
sampled from this distribution. Our idea is to efficiently evaluate 𝑝 on all 𝑂(𝑛2/𝑠2)
pairs of groups from 𝑅 and 𝐵, by feeding as input to 𝑝 all 𝑠 vectors 𝑥𝑖 from a group
of 𝑅 and all 𝑠 vectors 𝑦𝑖 from a group of 𝐵.

Since the number of monomials 𝑚 ≤ 𝑛0.17, we can apply Lemma 8.2, evaluating 𝑝
on all pairs of groups in time �̃�(𝑛2/𝑠2). For each pair of groups from 𝑅 and 𝐵, this
evaluation determines if the pair of groups contain a bichromatic pair of distance at
most 𝑘, with probability at least 2/3.

To obtain a high probability answer, sample ℓ = 10 log 𝑛 polynomials 𝑝1, . . . , 𝑝ℓ
for 𝑀 -dist𝑘 independently from the distribution, in �̃�(𝑛2/𝑠2) time (by assumption).
Evaluate each 𝑝𝑖 on all pairs of groups from 𝑅 and 𝐵 in �̃�(𝑛2/𝑠2) time by the above
paragraph. Compute the majority value of 𝑝1, . . . , 𝑝ℓ on all pairs of groups, again in
�̃�(𝑛2/𝑠2) time. By a Chernoff-Hoeffding bound, the majority value reported for a
pair of groups is correct with probability at least 1−𝑛−3. Therefore with probability
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at least 1−𝑛−1, we correctly determine for all pairs of groups from 𝑅 and 𝐵 whether
the pair contains a bichromatic pair of vectors with distance at most 𝑘.

Given a pair of groups 𝑅′ and 𝐵′ which are reported to contain a bichromatic
pair of close vectors,we can simply brute force to find the closest pair in 𝐴′ and 𝐵′ in
𝑠2 ·poly(𝑑) time. (In principle, we could also perform a recursive call, but this doesn’t
asymptotically help us in our applications.)

We will use our probabilistic PTF from the previous chapter:

Lemma 8.3. For sufficiently large 𝑠 and 𝑑, the Hamming-dist𝑘 function on 2𝑠𝑑 vari-
ables has a probabilistic PTF of degree 𝑂(𝑑1/3 log2/3(𝑑𝑠)), error at most 1/3, and at
most 𝑂(𝑠2·

(︀
𝑑

𝑂(𝑑1/3 log2/3(𝑑𝑠))

)︀
) monomials, whose coefficients are polylog(𝑛) bit numbers.

Moreover, we can sample from the probabilistic PTF distribution in time polynomial
in the number of monomials.

Proof. Applying Corollary 7.4 (‘exact setting’) with 𝑛 ← 𝑑, 𝑠 ← 𝑠2, and 𝑡 ← 𝑘,
gives us a probabilistic PTF degree 𝑂(𝑑1/3 log2/3(𝑑𝑠)), error at most 1/3, and at
most 𝑂(𝑠2 ·

(︀
𝑑

𝑂(𝑑1/3 log2/3(𝑑𝑠))

)︀
) monomials for, on input 𝑧 ∈ {0, 1}2𝑑·𝑠2 , testing the

predicate
⋁︀

𝑖,𝑗∈[𝑠]

[︁∑︀𝑑
ℓ=1 𝑧𝑖,𝑗,ℓ ≤ 𝑘

]︁
. We use this to solve Hamming-dist𝑘 function on

inputs 𝑥, 𝑦 ∈ {0, 1}2𝑑·𝑠 by substituting in 𝑧𝑖,𝑗,ℓ ← (𝑥𝑖,ℓ(1 − 𝑦𝑗,ℓ) + (1 − 𝑥𝑖,ℓ)𝑦𝑗,ℓ) for
all 𝑖, 𝑗 ∈ [𝑠] and ℓ ∈ [𝑑]. Hence, for any 𝑖, 𝑗 ∈ [𝑠], the quantity

∑︀𝑑
ℓ=1 𝑧𝑖,𝑗,ℓ computes

exactly the Hamming distance between 𝑥𝑖 and 𝑦𝑗, and so the result is a probabilistic
PTF for the Hamming-dist𝑘 function.

Since we substituted in a polynomial with 4 monomials for each 𝑧𝑖,𝑗,ℓ, this
increases the number of monomials in the resulting probabilistic PTF by a fac-
tor of 4𝑂(𝑑1/3 log2/3(𝑑𝑠)), but this factor is subsumed by the binomial coefficient(︀

𝑑
𝑂(𝑑1/3 log2/3(𝑑𝑠))

)︀
.

Putting it all together, we obtain a faster algorithm for Bichromatic Hamming
Closest Pair:

Theorem 8.2. For 𝑛 vectors of dimension 𝑑 = 𝑐(𝑛) log 𝑛, Bichromatic Hamming
Closest Pair can be solved in 𝑛2−1/𝑂(

√
𝑐(𝑛) log3/2 𝑐(𝑛)) time by a randomized algorithm

that is correct with high probability.

Proof. Let 𝑑 = 𝑐 log 𝑛 in the following, with the implicit understanding that 𝑐 is a
function of 𝑛. We apply the reduction of Theorem 8.1 and the probabilistic PTF for
Hamming-dist𝑘 of Lemma 8.3.

The reduction of Theorem 8.1 requires that the number of monomials in our prob-
abilistic polynomial is at most 𝑛0.17, while the monomial bound for Hamming-dist𝑘
from Theorem 8.3 is 𝑚 = 𝑂(𝑠2 ·

(︀
𝑑

𝑎𝑑1/3 log2/3(𝑠)

)︀
) for some universal constant 𝑎, provided

that 𝑠 > 𝑑 are sufficiently large. Therefore our primary task is to maximize the value
of 𝑠 such that 𝑚 ≤ 𝑛0.17. This will minimize the final running time of �̃�(𝑛2/𝑠2).
With hindsight, let us guess 𝑠 = 𝑛1/(𝑢

√
𝑐 log3/2 𝑐) for a constant 𝑢, and focus on the

120



large binomial in the monomial estimate 𝑚. Then,(︂
2𝑑

𝑎𝑑1/3 log2/3(𝑠)

)︂
=

(︂
2𝑐 log 𝑛

𝑎(𝑐 log 𝑛)1/3 · (log 𝑛)2/3/(𝑢
√
𝑐 log3/2 𝑐)2/3

)︂
=

(︂
2𝑐 log 𝑛

𝑎 log 𝑛/(𝑢2/3 log 𝑐)

)︂
.

For notational convenience, let 𝛿 = 𝑎/(𝑢2/3 log 𝑐). By Proposition 2.2 from the Pre-
liminaries, we have (︂

2𝑐 log 𝑛

𝛿 log 𝑛

)︂
≤
(︂

2𝑐𝑒

𝛿

)︂𝛿 log𝑛

= 𝑛𝛿 log( 2𝑐𝑒
𝛿

).

Plugging 𝛿 = 𝑎/(𝑢2/3 log 𝑐) back into the exponent, we find

𝛿 log

(︂
2𝑐𝑒

𝛿

)︂
=
𝑎 log(2𝑐𝑒𝑢

2/3 log 𝑐
𝑎

)

𝑢2/3 log 𝑐
. (8.1)

The quantity (8.1) can be made arbitrarily small, by setting 𝑢 sufficiently large. In
that case, the number of monomials 𝑚 ≤ 𝑠2𝑛𝛿 log( 2𝑐𝑒

𝛿
) can be made less than 𝑛0.1.

Remark 8.1. Observe that we would not have been able to prove Theorem 8.2 if the
probabilistic PTF degree we applied from Lemma 8.3 had an additional polylog(𝑛)
multiplicative factor (which would have been the case if we hadn’t succeeded at remov-
ing such factors from the degree in Theorem 7.2 earlier). Indeed, propagating this
extra factor through the proof of Theorem 8.2 would have resulted in an additional
polylog 𝑛 multiplicative factor in expression (8.1). It would then have been impossible
to pick a constant 𝑢 such that expression (8.1) is at most 0.1.

Now we show how to solve Batch Hamming Nearest Neighbor (BHNN).
In the following theorem, we assume for all pairs of vectors in our instance that the
maximum metric distance is at most some value 𝑀𝐴𝑋. (For the Hamming distance,
𝑀𝐴𝑋 ≤ 𝑑.) We reduce the batch nearest neighbor query problem to the bichromatic
close pair problem:

Theorem 8.3. Let 𝐸𝑑 be some 𝑑-dimensional domain supporting a metric space 𝑀 .
If the Bichromatic 𝑀-Metric Closest Pair on 𝑛 vectors in 𝐸𝑑 can be solved
in 𝑇 (𝑛, 𝑑) time, then Batch 𝑀-Metric Nearest Neighbors on 𝑛 vectors in 𝐸𝑑

can be solved in 𝑂(𝑛 · 𝑇 (
√
𝑛, 𝑑) ·𝑀𝐴𝑋) time.

Proof. We give an oracle reduction similar to previous work [AWY15]. Initialize an
table 𝑇 of size 𝑛, with the maximum metric value 𝑣 in each entry. Given 𝑛 database
vectors 𝐷 and 𝑛 query vectors 𝑄, color 𝐷 red and 𝑄 blue. Break 𝐷 into ⌈𝑛/𝑠⌉ groups
of size at most 𝑠, and do the same for the set 𝑄. For each pair (𝑅′, 𝐵′) ⊂ (𝐷×𝑄) of
groups, and for each 𝑘 = 𝑀𝐴𝑋−1, . . . , 1, 0, we initialize 𝐷𝑘 := 𝐷, 𝑄𝑘 := 𝑄, and call
Bichromatic 𝑀-Metric Closest Pair on (𝑅′, 𝐵′) ⊂ (𝐷𝑘 × 𝑄𝑘) with integer 𝑘.
While we continue to find a pair (𝑥𝑖, 𝑦𝑗) ∈ (𝑅′×𝐵′) with 𝑀(𝑥𝑖, 𝑦𝑗) ≤ 𝑘, set 𝑇 [𝑖] := 𝑘
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and remove 𝑦𝑗 from 𝑄𝑘 and 𝐵′. (With a few more recursive calls, we could also find
an explicit vector 𝑦𝑗 such that 𝑀(𝑥𝑖, 𝑦𝑗) ≤ 𝑘.)

Now for each call that finds a close bichromatic pair, we remove a vector from 𝑄𝑘;
we do this at most 𝑀𝐴𝑋 times for each vector, so there can be at most 𝑀𝐴𝑋 ·𝑛 such
calls. For each pair of groups, there are 𝑀𝐴𝑋 oracle calls that find no bichromatic
pair. Therefore the total running time is 𝑂((𝑛 + 𝑛2/𝑠2) · 𝑇 (𝑠, 𝑑) ·𝑀𝐴𝑋). Setting
𝑠 =
√
𝑛 to balance the terms, the running time is 𝑂(𝑛 · 𝑇 (

√
𝑛, 𝑑) ·𝑀𝐴𝑋).

The following is immediate from Theorem 8.3 and Theorem 8.2:

Theorem 8.4. For 𝑛 vectors of dimension 𝑑 = 𝑐(𝑛) log 𝑛, Batch Hamming Near-
est Neighbors can be solved in 𝑛2−1/𝑂(

√
𝑐(𝑛) log3/2 𝑐(𝑛)) time by a randomized algo-

rithm, with high probability.

Remark 8.2. For a deterministic algorithm, we can use the PTF from Corollary 7.3
instead of the probabilistic PTF from Corollary 7.4 when constructing our polynomial
for the Hamming-dist𝑘 function in Lemma 8.3. The exact same algorithm then results
in a deterministic running time of 𝑛2−1/𝑂(𝑐 log2 𝑐).

8.2.1 Closest Pair in Hamming Space is Hard

The Strong Exponential Time Hypothesis (SETH) states that there is no universal
𝛿 < 1 such that for all 𝑐, CNF-SAT with 𝑛 variables and 𝑐𝑛 clauses can be solved in
𝑂(2𝛿𝑛) time. We next show that, assuming SETH, there is a limit to how much one
can improve our running time from Theorem 8.4.

Theorem 8.5. Suppose there is 𝜀 > 0 such that for all constant 𝑐, Bichromatic
Hamming Closest Pair can be solved in 2𝑜(𝑑) · 𝑛2−𝜀 time on a set of 𝑛 points in
{0, 1}𝑐 log𝑛. Then SETH is false.

Proof. The proof is a reduction from the Orthogonal Vectors problem with 𝑛
vectors 𝑆 ⊂ {0, 1}𝑑, which asks whether there are 𝑢, 𝑣 ∈ 𝑆 such that ⟨𝑢, 𝑣⟩ = 0. It is
well-known that an algorithm for Orthogonal Vectors running in time 2𝑜(𝑑) ·𝑛2−𝜀

would refute SETH [Wil05]. Indeed, we show that Bichromatic Minimum Inner
Product (finding a pair of vectors with minimum inner product, not just inner
product zero) reduces to Bichromatic Hamming Closest Pair, as well as the
version for maximum inner product.

First, we observe that Bichromatic Hamming Closest Pair is equivalent to
Bichromatic Hamming Furthest Pair: let 𝑣 be the complement of 𝑣 (the vector
obtained by flipping all the bits of 𝑣). Then the Hamming distance of 𝑢 and 𝑣 is
𝐻(𝑢, 𝑣) = 𝑑 − 𝐻(𝑢, 𝑣). Thus by flipping all the bits in the components of the blue
vectors, we can reduce from the closest pair problem to furthest pair, and vice versa.

Now we reduce Orthogonal Vectors to Bichromatic Hamming Furthest
Pair. Our Orthogonal Vectors instance has red vectors 𝑆𝑟 and blue vectors 𝑆𝑏,
and we wish to find 𝑢 ∈ 𝑆𝑟 and 𝑣 ∈ 𝑆𝑏 such that ⟨𝑢, 𝑣⟩ = 0.

For every 𝑑2 possible choice of 𝐼, 𝐽 = 1, . . . , 𝑑, construct the subset 𝑆𝑟,𝐼 of vectors
in 𝑆𝑟 with exactly 𝐼 ones, and construct the subset 𝑆𝑏,𝐽 of vectors in 𝑆𝑏 with exactly
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𝐽 ones. We will look for an orthogonal pair among 𝑆𝑟,𝐼 and 𝑆𝑏,𝐽 for all such 𝐼, 𝐽
separately.

Recall that Hamming distance of two vectors equals the ℓ22 norm distance, in
{0, 1}𝑑. The ℓ22 norm of 𝑢 and 𝑣 is

||𝑢− 𝑣||22 = ||𝑢||2 + ||𝑣||2 − 2⟨𝑢, 𝑣⟩.

However, in 𝑆𝑟,𝐼 all vectors have the same norm, and all vectors in 𝑆𝑏,𝐽 have the same
norm. Therefore, finding a red-blue pair 𝑢 ∈ 𝑆𝑟,𝐼 and 𝑣 ∈ 𝑆𝑏,𝐽 with minimum inner
product is equivalent to finding a pair in 𝑆𝑟 × 𝑆𝑏 with smallest Hamming distance.
(Similarly, maximum inner product is equivalent to Hamming closest pair.)

The reduction only requires 𝑂(𝑑2) calls to Bichromatic Hamming Furthest
Pair, with no changes to the dimension 𝑑 nor the number of vectors 𝑛.

8.2.2 Metrics Beyond Hamming Distance

We now show how Theorem 8.4 can be extended to find nearest neighbors for a number
of other metrics. We state our best randomized running times in this Subsection, but
one could also apply Remark 8.2 to get deterministic algorithms with slightly worse
running times in all of the applications below.

Recall that the ℓ1 norm of two vectors 𝑥 and 𝑦 is
∑︀

𝑖 |𝑥𝑖−𝑦𝑖|. We can solve Batch
ℓ1 Nearest Neighbors on vectors with small integer entries by a simple reduction
to Batch Hamming Nearest Neighbors, (which is probably folklore):

Theorem 8.6. For 𝑛 vectors of dimension 𝑑 = 𝑐 log 𝑛 in {0, 1, . . . ,𝑚}𝑑, Batch ℓ1
Nearest Neighbors can be solved in 𝑛2−1/𝑂(

√
𝑚𝑐 log3/2(𝑚𝑐)) time by a randomized

algorithm, with high probability.

Proof. Notice that for any 𝑥, 𝑦 ∈ {0, . . . ,𝑚}, the Hamming distance of their unary
representations, written as 𝑚-dimensional vectors, is equal to |𝑥 − 𝑦|. Hence,
for 𝑥 ∈ {0, . . . ,𝑚}𝑑, we can transform it into a vector 𝑥′ ∈ {0, 1}𝑚𝑑 by set-
ting (𝑥′𝑚(𝑖−1)+1, 𝑥

′
𝑚(𝑖−1)+2, . . . , 𝑥

′
𝑚(𝑖−1)+𝑚) equal to the unary representation of 𝑥𝑖, for

1 ≤ 𝑖 ≤ 𝑑. It is then equivalent to solve the Hamming nearest neighbors problem on
these 𝑚𝑑-dimensional vectors.

It is also easy to extend Theorem 8.4 for vectors over 𝑂(1)-sized alphabets using
equidistant binary codes ([MKZ09], Section 5.1). This is useful for applications in
biology, such as finding similar DNA sequences. The above algorithms also apply to
computing maximum inner products:

Theorem 8.7. The Bichromatic Minimum Inner Product (and Maximum)
problem with 𝑛 red and blue Boolean vectors in 𝑐 log 𝑛 dimensions can be solved in
𝑛2−1/𝑂(

√
𝑐 log3/2 𝑐) randomized time.

Proof. In Theorem 8.5 above, we gave a reduction from Bichromatic Minimum
Inner Product to Bichromatic Hamming Furthest Pair, and showed that
Bichromatic Hamming Furthest Pair is equivalent to Bichromatic Hamming

123



Closest Pair. The same reduction shows that Bichromatic Maximum Inner
Product reduces to the closest pair version. Hence Theorem 8.4 applies, to both
minimum and maximum inner products.

As a consequence, we can answer a batch of 𝑛 minimum inner product queries
on a database of size 𝑛 with the same time estimate, applying a reduction analogous
to that of Theorem 8.3. From there, Theorem 8.7 can be extended to other impor-
tant similarity measures, such as finding a pair of sets 𝐴,𝐵 with maximum Jaccard
coefficient, defined as |𝐴∩𝐵|

|𝐴∪𝐵| [Bro97].

Corollary 8.1. Given 𝑛 red and blue subsets of a universe of size 𝑐 log 𝑛, we can find
the pair of red and blue sets with maximum Jaccard coefficient in 𝑛2−1/𝑂(

√
𝑐 log3/2 𝑐)

randomized time.

Proof. Let 𝑆 be a given collection of red and blue sets over [𝑑]. We construe the sets
in 𝑆 as vectors, in the natural way. For all possible values 𝑑1, 𝑑2 = 1, . . . , 𝑑, we will
construct an instance of Bichromatic Maximum Inner Product 𝑆 ′

𝑑1,𝑑2
, and take

the best pair found, appealing to Theorem 8.7.
As in the proof of Theorem 8.5, we “filter” sets based on their cardinalities. In the

instance 𝑆 ′
𝑑1,𝑑2

of Bichromatic Maximum Inner Product, we only include red
sets with cardinality exactly 𝑑1, and blue sets with cardinality exactly 𝑑2. For sets
𝑅,𝐵, we have

|𝑅 ∩𝐵|
|𝑅 ∪𝐵|

=
|𝑅 ∩𝐵|

𝑑1 + 𝑑2 − |𝑅 ∩𝐵|
. (8.2)

Suppose that we choose a red set 𝑅 and blue set 𝐵 that maximize |𝑅 ∩ 𝐵|. This
choice simultaneously maximizes the numerator and minimizes the denominator of
(8.2), producing the sets 𝑅 and 𝐵 with maximum Jaccard coefficient over the red
sets with cardinality 𝑑1 and blue sets with cardinality 𝑑2. Finding the maximum pair
𝑅 and 𝐵 over each choice of 𝑑1, 𝑑2, we will find the overall 𝑅 and 𝐵 with maximum
Jaccard coefficient.

8.3 Approximate Batch Nearest Neighbor Search

The same approach that we used in Theorem 8.4 for exact nearest neighbor search in
Hamming space can be applied to solve for approximate nearest neighbor search in
Hamming space as well:

Theorem 8.8. Given 𝑛 red and 𝑛 blue points in {0, 1}𝑑 and 𝜀≫ log6(𝑑 log 𝑛)/ log3 𝑛,
we can find an approximate Hamming nearest/farthest blue neighbor with additive
error at most 𝜀𝑑 for each red point in randomized time 𝑛2−Ω(𝜀1/3/ log( 𝑑

𝜀 log𝑛
)).

Proof. We mimic the proof of Theorem 8.4 up to the definition of the polynomial
in Lemma 8.3. However, instead of applying the exact polynomial of Corollary 7.4,
we insert the approximate polynomial construction from the same Corollary. While
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the exact polynomial had degree 𝑂(𝑑1/3 log2/3(𝑑𝑠)), the approximate one has degree
𝑂((1/𝜖)1/3 log 𝑠). Setting

𝑠 := 𝑛𝛼 := 𝑛Ω(𝜀1/3/ log( 𝑑
𝜀 log𝑛

)),

the number of monomials in the new polynomial is now

𝑠2 ·
(︂

𝑂(𝑑)

𝑂((1/𝜀)1/3 log 𝑠)

)︂
≤ 𝑛2𝛼 ·𝑂

(︂
𝑑

(𝛼/𝜀1/3) log 𝑛

)︂𝑂((𝛼/𝜀1/3) log𝑛)

≤ 𝑛2𝛼 · 𝑛𝑂((𝛼/𝜀1/3) log 𝑑
𝛼 log𝑛

) ≪ (𝑛/𝑠)0.1,

for large enough 𝑛. The remainder of the algorithm is the same as the proof of
Theorem 8.4, and the running time is �̃�(𝑛2/𝑠2) ≤ 𝑛2−Ω(𝜀1/3/ log( 𝑑

𝜀 log𝑛
)).

Remark 8.3. For a deterministic algorithm, using Corollary 7.3 instead of Corol-
lary 7.4, the we get a deterministic running time of 𝑛2−Ω(

√
𝜀/ log( 𝑑

𝜀 log𝑛
)).

The algorithm of Theorem 8.8 still has three drawbacks: (i) the exponent in the
time bound depends on the dimension 𝑑, (ii) the result requires additive instead of
multiplicative error, and (iii) the result is for Hamming space instead of more generally
ℓ1 or ℓ2. We sketch how to resolve all three issues at once, by using known dimension
reduction techniques:

Theorem 8.9. Given 𝑛 red and 𝑛 blue points in [𝑈 ]𝑑 and 𝜀 ≫ log6 log𝑛
log3 𝑛

, we can find
a (1 + 𝜀)-approximate ℓ1 or ℓ2 nearest/farthest blue neighbor for each red point in
(𝑑𝑛+ 𝑛2−Ω(𝜀1/3/ log(1/𝜀))) · poly(log(𝑛𝑈)) randomized time.

Proof. (The ℓ1 case.) We first solve the decision problem for a fixed threshold value
𝑡. We use a variant of ℓ1 locality-sensitive hashing (see [And05]) to map points from ℓ1
into low-dimensional Hamming space (providing an alternative to Kushilevitz, Ostro-
vsky, and Rabani’s dimension reduction technique for Hamming space [KOR00]). For
each red/blue point 𝑝 and each 𝑖 ∈ {1, . . . , 𝑘}, define ℎ𝑖(𝑝) = (ℎ𝑖1(𝑝), . . . , ℎ𝑖𝑑(𝑝)) with
ℎ𝑖𝑗(𝑝) =

⌊︀
(𝑝𝑎𝑖𝑗 + 𝑏𝑖𝑗)/(2𝑡)

⌋︀
where 𝑎𝑖𝑗 ∈ {1, . . . , 𝑑} and 𝑏𝑖𝑗 ∈ [0, 2𝑡) are independent

uniformly distributed random variables. For each of the 𝑂(𝑛) hashed values of ℎ𝑖,
pick a random bit; let 𝑓𝑖(𝑝) be the random bit associated with ℎ𝑖(𝑝). Finally, define
𝑓(𝑝) = (𝑓1(𝑝), . . . , 𝑓𝑘(𝑝)) ∈ {0, 1}𝑘. For any fixed 𝑝, 𝑞,

Pr[ℎ𝑖𝑗(𝑝) ̸= ℎ𝑖𝑗(𝑞)] =
1

𝑑

𝑑∑︁
𝑎=1

min

{︂
|𝑝𝑎 − 𝑞𝑎|

2𝑡
, 1

}︂
, and so

Pr[𝑓𝑖(𝑝) ̸= 𝑓𝑖(𝑞)] =
1

2
Pr[ℎ𝑖(𝑝) ̸= ℎ𝑖(𝑞)] =

1

2
Pr

[︃
𝑘⋁︁

𝑗=1

[ℎ𝑖𝑗(𝑝) ̸= ℎ𝑖𝑗(𝑞)]

]︃
.

Hence,

∙ If ‖𝑝 − 𝑞‖1 ≤ 𝑡, then Pr[ℎ𝑖𝑗(𝑝) ̸= ℎ𝑖𝑗(𝑞)] ≤ ‖𝑝−𝑞‖1
2𝑑𝑡

≤ 1
2𝑑

and Pr[𝑓𝑖(𝑝) ̸= 𝑓𝑖(𝑞)] ≤
𝛼0 := 1

2
(1− (1− 1

2𝑑
)𝑑);
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∙ if ‖𝑝 − 𝑞‖1 ≥ (1 + 𝜀)𝑡, then Pr[ℎ𝑖𝑗(𝑝) ̸= ℎ𝑖𝑗(𝑞)] ≥ min{‖𝑝−𝑞‖1
2𝑑𝑡

, 1
𝑑
} ≥ 1+𝜀

2𝑑
and

Pr[𝑓𝑖(𝑝) ̸= 𝑓𝑖(𝑞)] ≥ 𝛼1 := 1
2
(1− (1− 1+𝜀

2𝑑
)𝑑).

Note that 𝛼1−𝛼0 = Ω(𝜀). By a Chernoff bound, it follows (assuming 𝑘 ≥ log 𝑛) that

∙ if ‖𝑝− 𝑞‖1 ≤ 𝑡, then ‖𝑓(𝑝)−𝑓(𝑞)‖1 ≤ 𝐴0 := 𝛼0𝑘+𝑂(
√
𝑘 log 𝑛) with probability

1−𝑂(1/𝑛3);

∙ if ‖𝑝 − 𝑞‖1 ≥ (1 + 𝜀)𝑡, then ‖𝑓(𝑝) − 𝑓(𝑞)‖1 ≥ 𝐴1 := 𝛼1𝑘 − 𝑂(
√
𝑘 log 𝑛) with

probability 1−𝑂(1/𝑛3).

Note that 𝐴1 − 𝐴0 = Ω(𝜀𝑘) by setting 𝑘 to be a sufficiently large constant times
(1/𝜀)2 log 𝑛. We have thus reduced the problem to an approximate problem with
additive error 𝑂(𝜀𝑘) for Hamming space in 𝑘 = 𝑂((1/𝜀2) log 𝑛) dimensions, which by
Theorem 8.8 requires 𝑛2−Ω(𝜀1/3/ log(1/𝜀)) time. The initial cost of applying the mapping
𝑓 is 𝑂(𝑑𝑘𝑛).

This solves the decision problem; we can then solve the original problem by calling
the decision algorithm 𝑂(log1+𝜀 𝑈) times for all 𝑡’s that are powers of 1 + 𝜀.

Proof. (The ℓ2 case.) We use a version of the Johnson–Lindenstrauss lemma to map
from ℓ2 to ℓ1 (see for example [Mat08]). For each red/blue point 𝑝, define 𝑓(𝑝) =
(𝑓1(𝑝), . . . , 𝑓𝑘(𝑝)) ∈ R𝑘 with 𝑓𝑖(𝑝) =

∑︀𝑘
𝑗=1 𝑎𝑖𝑗𝑝𝑗, where the 𝑎𝑖𝑗’s are independent

normally distributed random variables with mean 0 and variance 1. For each fixed
𝑝, 𝑞 ∈ R𝑑, it is known that after rescaling by a constant, ‖𝑓(𝑝)− 𝑓(𝑞)‖1 approximates
‖𝑝 − 𝑞‖2 to within 1 ± 𝑂(𝜀) factor with probability 1 − 𝑂(1/𝑛3), by setting 𝑘 =
𝑂((1/𝜀)2 log 𝑛). It suffices to keep 𝑂(log𝑈)-bit precision of the mapped points. The
initial cost of applying the mapping 𝑓 is 𝑂(𝑑𝑘𝑛) (which can be slightly improved by
utilizing a sparse Johnson–Lindenstrauss transform [AC09]).

Numerous applications to high-dimensional computational geometry now follow.
We briefly mention just one such application, building on the work of [IM98, HIM12]:

Corollary 8.2. Given 𝑛 points in [𝑈 ]𝑑 and 𝜀 ≫ log6 log 𝑛/ log3 𝑛, we can find a
(1 + 𝜀)-approximate ℓ1 or ℓ2 minimum spanning tree in (𝑑𝑛 + 𝑛2−Ω(𝜀1/3/ log(1/𝜀))) ·
poly(log(𝑛𝑈)) randomized time.

Proof. Let 𝐺𝑟 denote the graph where the vertex set is the given point set 𝑃 and
an edge 𝑝𝑞 is present whenever 𝑝 and 𝑞 have distance at most 𝑟. Har-Peled, Indyk,
and Motwani [HIM12] gave a reduction of the approximate minimum spanning tree
problem to the following approximate connected components problem:

Given a value 𝑟, compute a partition of 𝑃 into subsets with the properties
that (i) two points in the same subset must be in the same component
in 𝐺(1+𝜀)𝑟, and (ii) two points in different subsets must be in different
components in 𝐺𝑟.
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The reduction is based on Kruskal’s algorithm and increases the running time by a
logarithmic factor.

To solve the approximate connected components problem, Har-Peled, Indyk, and
Motwani gave a further reduction to online dynamic approximate nearest neighbor
search. Since we want a reduction to offline static approximate nearest neighbor
search, we proceed differently.

We first reduce the approximate connected components problem to the offline
approximate nearest foreign neighbors problem:

Given a set 𝑃 of 𝑛 colored points with colors from [𝑛], for each point 𝑞 ∈ 𝑃 ,
find a (1 + 𝜀)-approximate nearest neighbor NFN𝑞 among all points in 𝑃
with color different from 𝑞’s color.

The reduction can be viewed as a variant of Boruvka’s algorithm and is as follows:
Initially assign each point a unique color and mark all colors as active. At each
iteration, solve the offline approximate nearest foreign neighbors problem for points
with active colors. For each 𝑞, if NFN𝑞 and 𝑞 have distance at most (1 + 𝜀)𝑟 and
have different colors, merge the color class of NFN𝑞 and 𝑞. If a color class has not
been merged to other color classes during the iteration, mark its color as inactive.
When all colors are inactive, output the color classes. Otherwise, proceed to the next
iteration. The correctness of the algorithm is obvious. Since each iteration decreases
the number of active colors by at least a half, the number of iterations is bounded by
𝑂(log 𝑛). Thus, the reduction increases the running time by a logarithmic factor.

To finish, we reduce the offline approximate nearest foreign neighbors problem to
the standard (red/blue) offline approximate nearest neighbors problem by a standard
trick: For each 𝑗 = 1, . . . , ⌈log 𝑛⌉, for each point 𝑞 ∈ 𝑃 where the 𝑗-th bit of 𝑞’s
color is 0 (resp. 1), compute an approximate nearest neighbor of 𝑞 among all points
𝑝 ∈ 𝑃 where the 𝑗-th bit of 𝑝’s color is 1 (resp. 0). Record the nearest among all
approximate nearest neighbors found for each point 𝑞. The final reduction increases
the running time by another logarithmic factor.

8.4 The Light Bulb Problem

In all our applications of the polynomial method for algorithm design so far, we have
been focusing on optimizing the asymptotics of the exponent in the running time as
a parameter of the problem (in particular, the constant factor 𝑐 in the dimension for
the problem) grew. In this Section, we instead show techniques for optimizing the
constants in the exponent of the running time. We focus our attention on the Light
Bulb Problem.

Problem 8.1 (Light Bulb Problem). We are given as input a set 𝑆 of 𝑛 vectors from
{−1, 1}𝑑, which are all independently and uniformly random except for two planted
vectors (the correlated pair) which have inner product at least 𝜌 ·𝑑 for some 0 < 𝜌 ≤ 1.
The goal is to find the correlated pair.
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Theorem 8.10. For every 𝜀, 𝜌 > 0, there is a 𝜅 > 0 such that the Light Bulb Problem
for correlation 𝜌 can be solved in randomized time 𝑂(𝑛2𝜔/3+𝜀) whenever 𝑑 = 𝜅 log 𝑛
with polynomially low error.

Proof. Our algorithm can be seen as applying the polynomial method in algorithm
design for the very simple polynomial 𝑝(𝑥, 𝑦) = (⟨𝑥, 𝑦⟩)𝑟.

For two constants 𝛾, 𝑘 > 0 to be determined, we will pick 𝜅 = 𝛾𝑘2/𝜌2. Let
𝑆 ⊆ {−1, 1}𝑑 be the set of input vectors, and let 𝑥′, 𝑦′ ∈ 𝑆 denote the correlated
pair which we are trying to find. For distinct 𝑥, 𝑦 ∈ 𝑆 other than the correlated
pair, the inner product ⟨𝑥, 𝑦⟩ is a sum of 𝑑 uniform independent {−1, 1} values. Let
𝑣 := 𝛾(𝑘/𝛿) log 𝑛. By a Chernoff bound, for large enough 𝛾, we have |⟨𝑥, 𝑦⟩| ≤ 𝑣 with
probability at least 1− 1/𝑛3. Hence, by a union bound over all pairs of uncorrelated
vectors, we have |⟨𝑥, 𝑦⟩| ≤ 𝑣 for all such 𝑥, 𝑦 with probability at least 1 − 1/𝑛. We
assume henceforth that this is the case. Meanwhile, ⟨𝑥′, 𝑦′⟩ ≥ 𝜌𝑑 = 𝑘𝑣.

Arbitrarily partition 𝑆 into 𝑚 := 𝑛2/3 groups 𝑆1, . . . , 𝑆𝑚 of size 𝑔 := 𝑛/𝑚 = 𝑛1/3

each. We can compute the inner product between each pair of vectors which was
assigned to the same group in time 𝑂(𝑚 · 𝑔2 · 𝑑) = �̃�(𝑛4/3), and if we find the
correlated pair, we can return it and end the algorithm. Otherwise, we may assume
the correlated vectors are in different groups, and we continue.

For each 𝑥 ∈ 𝑆, our algorithm picks a value 𝑎𝑥 ∈ {−1, 1} independently and
uniformly at random. For a constant 𝜏 > 0 to be determined, let 𝑟 = ⌈log𝑘(𝜏𝑛1/3)⌉,
and define the polynomial 𝑝 : R𝑑 → R by 𝑝(𝑧1, . . . , 𝑧𝑑) = (𝑧1 + · · ·+ 𝑧𝑑)

𝑟. Our goal is,
for each (𝑖, 𝑗) ∈ [𝑚]2, to compute the value

𝐶𝑖,𝑗 :=
∑︁
𝑥∈𝑆𝑖

∑︁
𝑦∈𝑆𝑗

𝑎𝑥 · 𝑎𝑦 · 𝑝(𝑥1𝑦1, . . . , 𝑥𝑑𝑦𝑑).

Solving the problem using 𝐶𝑖,𝑗

Let us first explain why we are interested in computing 𝐶𝑖,𝑗. Denote 𝑝(𝑥, 𝑦) :=
𝑝(𝑥1𝑦1, . . . , 𝑥𝑑𝑦𝑑). Intuitively, 𝑝(𝑥, 𝑦) is computing an amplification of ⟨𝑥, 𝑦⟩. 𝐶𝑖,𝑗 is
then summing these amplified inner products for all pairs (𝑥, 𝑦) ∈ 𝑆𝑖 × 𝑆𝑗. We will
pick our parameters so that the amplified inner product of the correlated pair is large
enough to stand out from the sums of inner products of random pairs.

Let us be more precise. Recall that for uncorrelated 𝑥, 𝑦 we have |⟨𝑥, 𝑦⟩| ≤ 𝑣, and
hence |𝑝(𝑥, 𝑦)| ≤ 𝑣𝑟. Similarly, we have |𝑝(𝑥′, 𝑦′)| ≥ (𝑘𝑣)𝑟 ≥ 𝜏𝑛1/3𝑣𝑟. For 𝑥, 𝑦 ∈ 𝑆,
define 𝑎(𝑥,𝑦) := 𝑎𝑥 · 𝑎𝑦. Notice that, for 𝑖 ̸= 𝑗, 𝐶𝑖,𝑗 =

∑︀
𝑥∈𝑆𝑖,𝑦∈𝑆𝑗

𝑎(𝑥,𝑦)𝑝(⟨𝑥, 𝑦⟩), where
the 𝑎(𝑥,𝑦) are pairwise independent random {−1, 1} values.

We will now analyze the random variable 𝐶𝑖,𝑗 where we think of the vectors in 𝑆
as fixed, and only the values 𝑎𝑥 as random.

Consider first when the correlated pair are not in 𝑆𝑖 and 𝑆𝑗. Then, 𝐶𝑖,𝑗 has mean
0, and (since variance is additive for pairwise independent variables) 𝐶𝑖,𝑗 has variance
at most |𝑆𝑖| · |𝑆𝑗| ·max𝑥∈𝑆𝑖,𝑦∈𝑆𝑗

|𝑝(⟨𝑥, 𝑦⟩)|2 ≤ 𝑛2/3 · 𝑣2𝑟. For sufficiently large constant
𝜏 , by the Chebyshev inequality, we have that |𝐶𝑖,𝑗| ≤ 𝜏𝑛1/3𝑣𝑟/3 with probability at
least 3/4. Let 𝜃 = 𝜏𝑛1/3𝑣𝑟/3, so |𝐶𝑖,𝑗| ≤ 𝜃 with probability at least 3/4.

Meanwhile, if 𝑥′ ∈ 𝑆𝑖 and 𝑦′ ∈ 𝑆𝑗, then 𝐶𝑖,𝑗 is the sum of 𝑎(𝑥′,𝑦′)𝑝(⟨𝑥′, 𝑦′⟩)
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and a variable 𝐶 ′ distributed as 𝐶𝑖,𝑗 was in the previous paragraph. Hence, since
|𝑝(⟨𝑥′, 𝑦′⟩)| ≥ 𝜏𝑛1/3𝑣𝑟 = 3𝜃, and |𝐶 ′| ≤ 𝜃 with probability at least 3/4, we get by the
triangle inequality that |𝐶𝑖,𝑗| ≥ 2𝜃 with probability at least 3/4.

Hence, if we repeat the process of selecting the 𝑎𝑥 values for each 𝑥 ∈ 𝑆 in-
dependently at random 𝑂(log 𝑛) times, whichever pair 𝑆𝑖, 𝑆𝑗 has |𝐶𝑖,𝑗| ≥ 2𝜃 most
frequently will be the pair containing the correlated pair with polynomially low error,
and then a brute force within this set of 𝑂(𝑛1/3) vectors can find the correlated pair
in �̃�(𝑛2/3) time. In all, by a union bound over all possible errors, this will succeed
with polynomially low error.

Computing 𝐶𝑖,𝑗

It remains to give the algorithm to compute 𝐶𝑖,𝑗. Our overall approach will be
almost identical to Proposition 8.2. However, rather than appeal directly to the
statement of Proposition 8.2, we go through the details, since the running time of the
reduction stated there is actually too slow for us.

We begin by rearranging the expression for 𝐶𝑖,𝑗 into one which is easier to compute.
Since we are only interested in the values of 𝑝 when its inputs are all in {−1, 1}, we
can replace 𝑝 with its multilinearization1 𝑝. Let 𝑀1, . . . ,𝑀𝑡 be an enumeration of
all subsets of [𝑑] of size at most 𝑟, so 𝑡 =

∑︀𝑟
𝑖=0

(︀
𝑑
𝑖

)︀
. Then, there are coefficients

𝑐1, . . . , 𝑐𝑡 ∈ Z such that 𝑝(𝑥) =
∑︀𝑡

𝑠=1 𝑐𝑠𝑥𝑀𝑠 (where, for 𝑥 ∈ {−1, 1}𝑑 and 𝑀 ⊆ [𝑑]
we define 𝑥𝑀 :=

∏︀
𝑖∈𝑀 𝑥𝑖). Rearranging the order of summation, we see that we are

trying to compute

𝐶𝑖,𝑗 =
𝑡∑︁

𝑠=1

∑︁
𝑥∈𝑆𝑖

∑︁
𝑦∈𝑆𝑗

𝑎𝑥 · 𝑎𝑦 · 𝑐𝑠 · 𝑥𝑀𝑠 · 𝑦𝑀𝑠 =
𝑡∑︁

𝑠=1

⎡⎣𝑐𝑠(︃∑︁
𝑥∈𝑆𝑖

𝑎𝑥 · 𝑥𝑀𝑠

)︃⎛⎝∑︁
𝑦∈𝑆𝑗

𝑎𝑦 · 𝑦𝑀𝑠

⎞⎠⎤⎦ .
(8.3)

In order to compute 𝐶𝑖,𝑗, we first need to compute the coefficients 𝑐𝑠. Notice that 𝑐𝑠
depends only on |𝑀𝑠| and 𝑟. We can thus derive a simple combinatorial expression for
𝑐𝑠, and hence compute all of the 𝑐𝑠 coefficients in poly(𝑟) = polylog(𝑛) time. Alter-
natively, by starting with the polynomial (𝑧1 + · · ·+ 𝑧𝑑) and then repeatedly squaring
then multilinearizing, we can easily compute all the coefficients in 𝑂(𝑡2 polylog(𝑛))
time; this slower approach is still fast enough for our purposes.

Define the matrices 𝐴,𝐵 ∈ Z𝑚×𝑡 by 𝐴𝑖,𝑠 =
∑︀

𝑥∈𝑆𝑖
𝑎𝑥 · 𝑥𝑀𝑠 and 𝐵𝑖,𝑠 = 𝑐𝑠 · 𝐴𝑖,𝑠.

Notice from (8.3) that the matrix product 𝐶 := 𝐴𝐵𝑇 is exactly the matrix of the
values 𝐶𝑖,𝑗 we desire. A simple calculation (see Lemma 8.4 below) shows that for any
𝜀 > 0, we can pick a sufficiently big constant 𝑘 > 0 such that 𝑡 = 𝑂(𝑛2/3+𝜀). Since
𝑚 = 𝑂(𝑛2/3), if we have the matrices 𝐴,𝐵, then we can compute this matrix product
by performing 𝑛𝜀 instances of 𝑛2/3 × 𝑛2/3 × 𝑛2/3 matrix multiplication over Z with
polylog(𝑛)-bit entries, in �̃�(𝑛2𝜔/3+𝜀) time, completing the algorithm2.

1In other words, whenever a variable appears raised to an exponent bigger than 1, we reduce that
exponent mod 2 to either 0 or 1, which does not change the value of the polynomial.

2One can slightly decrease the constant 𝜀 > 0 so that the polylog(𝑛) factors do not appear in the
final running time.
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Unfortunately, computing the entries of 𝐴 and 𝐵 naively would take Ω(𝑚 · 𝑡 · 𝑔) =
Ω(𝑛5/3) time, which is slower than we would like. We will instead use a clever trick due
to Lovett [Lov11], which was first applied in this context by Karppa et al. [KKK16]:
we will compute those entries using another matrix multiplication. Let 𝑁1, . . . , 𝑁𝑢

be an enumeration of all subsets of [𝑑] of size at most ⌈𝑟/2⌉. For each 𝑖 ∈ [𝑚],
define the matrices 𝐿𝑖, 𝐿𝑖 ∈ Z𝑢×𝑔 (whose columns are indexed by elements 𝑥 ∈ 𝑆𝑖) by
𝐿𝑖
𝑠,𝑥 = 𝑥𝑁𝑠 and 𝐿𝑖

𝑠,𝑥 = 𝑎𝑥 · 𝑥𝑁𝑠 . Then, compute the product 𝑃 𝑖 := 𝐿𝑖𝐿𝑖
𝑇
. We can

see that 𝑃 𝑖
𝑠,𝑠′ =

∑︀
𝑥∈𝑆𝑖

𝑎𝑥 · 𝑥𝑁𝑠⊕𝑁𝑠′
, where 𝑁𝑠 ⊕𝑁𝑠′ is the symmetric difference of 𝑁𝑠

and 𝑁𝑠′ . Since any set of size at most 𝑟 can be written as the symmetric difference of
two sets of size at most ⌈𝑟/2⌉, each desired entry 𝐴𝑖,𝑠 can be found as an entry of the
computed matrix 𝑃 𝑖. Similar to our bound on 𝑡 from before (see Lemma 8.4 below),
we see that for big enough constant 𝑘, we have 𝑢 = 𝑂(𝑛1/3+𝜀). Computing the entries
of the 𝐿𝑖 matrices naively takes only 𝑂(𝑚 · 𝑢 · 𝑔 · 𝑟) = �̃�(𝑛 · 𝑢) = �̃�(𝑛4/3+𝜀) time,
and then computing the products 𝑃 𝑖 takes 𝑂(𝑚 ·max(𝑢, 𝑔)𝜔) = 𝑂(𝑛(2+𝜔)/3+𝜀) time;
both of these are dominated by 𝑂(𝑛2𝜔/3+𝜀). This completes the algorithm! Finally,
we perform the computations mentioned above in Lemma 8.4 below.

Lemma 8.4. For every 𝜀 > 0, there is a 𝑘 > 0 such that (with the same notation as
in the proof of Theorem 8.10 above) we can bound 𝑡 = 𝑂(𝑛2/3+𝜀), and 𝑢 = 𝑂(𝑛1/3+𝜀).

Proof. Recall that 𝑑 = 𝑂(𝑘2 log(𝑛)), and 𝑟 = log𝑘(𝑂(𝑛1/3)). Hence, by Proposi-
tion 2.2 from the Preliminaries,

𝑡 ≤ (𝑟+ 1) ·
(︂
𝑑

𝑟

)︂
≤ (𝑟+ 1) · (𝑒𝑑/𝑟)𝑟 ≤ 𝑂(𝑘2 log(𝑘))log𝑘(𝑂(𝑛1/3)) = 𝑛2/3+𝑂(log log(𝑘)/ log(𝑘)).

For any 𝜀 > 0 we can thus pick a sufficiently large 𝑘 so that 𝑡 ≤ 𝑂(𝑛2/3+𝜀). We can
similarly bound

(︀
𝑑

𝑟/2

)︀
≤ 𝑂(𝑛1/3+𝜀) which implies our desired bound on 𝑢.

8.4.1 Deterministic Algorithms

We now present two deterministic algorithms for the Light Bulb Problem. Each is a
slight variation on the algorithm from Theorem 8.10 above.

Theorem 8.11. For every 𝜀, 𝜌 > 0, there is a 𝜅 > 0 such that the Light Bulb Problem
for correlation 𝜌 can be solved in deterministic time 𝑂(𝑛2𝜔/3+𝜀) on almost all instances
whenever 𝑑 = 𝜅 log 𝑛.

Recall that our goal when solving the Light Bulb Problem on almost all instances
is to design a deterministic algorithm such that the probability of drawing an instance
where the algorithm fails is 1/poly(𝑛).

Proof. The only randomness used by our algorithm for Theorem 8.10 was our choice
of an independently and uniformly random 𝑎𝑥 ∈ {−1, 1} for each 𝑥 ∈ 𝑆. Since this
requires Θ(𝑛) random bits, and we repeat the entire algorithm Θ(log 𝑛) times to get
our desired correctness guarantee, the total number of random bits used is Θ(𝑛 log 𝑛).
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However, the only property of the 𝑎𝑥 variables which we use in the proof of correct-
ness is that they are pairwise-independent. By standard constructions3, only 𝑂(log 𝑛)
independent random bits are needed to generate 𝑛 pairwise-independent random bits.
Thus, our entire algorithm actually only needs 𝑂(log2 𝑛) independent random bits.

Our entirely deterministic algorithm then proceeds as follows. Pick the same 𝜅 as
in Theorem 8.10. Let 𝑆 ⊆ {−1, 1}𝑑 be the input vectors. Arbitrarily pick a subset
𝑆 ′ ⊆ 𝑆 of |𝑆 ′| = Θ(log 𝑛) of the input vectors, and let 𝑅 = 𝑆 ∖ 𝑆 ′ be the remaining
vectors.

We begin by testing via brute-force whether either vector of the correlated pair
is in 𝑆 ′. This can be done in 𝑂(|𝑆 ′| · |𝑆| · 𝑑) = 𝑂(𝑛 log2(𝑛)) time. If we find the
correlated pair (a pair with inner product at least 𝜌 · 𝑑), then we output it, and
otherwise, we can assume that the vectors in 𝑆 ′ are all uniformly random vectors
from {−1, 1}𝑑. In other words, we can use them as 𝑑 · |𝑆 ′| = Θ(log2 𝑛) independent
uniformly random bits. We thus use them as the required randomness to run the
algorithm from Theorem 8.10 on input vectors 𝑅. That algorithm has polynomially
low error, which implies the desired correctness guarantee.

Theorem 8.12. There is a constant 𝑤 > 0 such that, for every 𝜀, 𝜌 > 0, there is a
𝜅 > 0 such that the Promise Light Bulb Problem with parameter 𝑤 for correlation 𝜌
can be solved in deterministic time 𝑂(𝑛4𝜔/5+𝜀) whenever 𝑑 = 𝜅 log 𝑛.

Recall that in the Promise Light Bulb Problem with parameter 𝑤, we are promised
that every pair of vectors other than the correlated pair has inner product at most
𝑤
√
𝑑 log 𝑛, and our deterministic algorithm needs to solve the problem correctly on

every input with this guarantee.

Proof. The guarantee of the Promise Light Bulb Problem is that, when we pick
a sufficiently large 𝑤, the uncorrelated vectors have as small inner product as we
assumed they did in the first paragraph in the proof of Theorem 8.10. In other
words, there is a quantity 𝑣 such that |⟨𝑥, 𝑦⟩| ≤ 𝑣 for all 𝑥, 𝑦 ∈ 𝑆 other than the
correlated pair, and moreover, ⟨𝑥′, 𝑦′⟩ ≥ 𝑘𝑣 for a constant 𝑘 > 0 with 𝑘 → ∞ as
𝑤 →∞.

The algorithm is then almost identical to Theorem 8.10, except we need to remove
the only use of randomness: the randomness used to pick the 𝑎𝑥 values. To do this,
we will simply pick 𝑎𝑥 = 1 for all 𝑥.

In order to guarantee the correctness of our algorithm, we must now change the
parameters slightly. Instead of partitioning the input into 𝑚 = 𝑛2/3 groups of size
𝑔 = 𝑛1/3, we will instead partition into 𝑚 = 𝑛4/5 groups of size 𝑔 = 𝑛1/5. Similarly,
instead of picking 𝑟 (the exponent in the polynomial 𝑝) to be log𝑘(𝑂(𝑛1/3)), we will
pick 𝑟 = log𝑘(3𝑛2/5), so that 𝑝(𝑥′, 𝑦′) ≥ (𝑘𝑣)𝑟 = 3𝑛2/5𝑣𝑟.

With these choices, for any 𝑖 and 𝑗 such that the correlated pair are not in 𝑆𝑖 and
𝑆𝑗, we have |𝐶𝑖,𝑗| ≤ |𝑆𝑖| · |𝑆𝑗| ·𝑛2/5 = 𝑛2/5𝑣, whereas if 𝑥′ ∈ 𝑆𝑖 and 𝑦′ ∈ 𝑆𝑗 then by the
triangle inequality, |𝐶𝑖,𝑗| ≥ 𝑝(𝑥′, 𝑦′)− |𝑆𝑖| · |𝑆𝑗| · 𝑛2/5 ≥ 2𝑛2/5𝑣𝑟. Hence, the correlated
pair must be in whichever 𝑆𝑖 and 𝑆𝑗 with 𝑖 ̸= 𝑗 has the largest |𝐶𝑖,𝑗|.

3For one example, to generate 2ℓ−1 pairwise-independent bits, pick only ℓ bits 𝑏1, . . . , 𝑏ℓ ∈ {−1, 1}
independently and uniformly at random, and then output, for each 𝐼 ⊆ [ℓ], the product

∏︀
𝑖∈𝐼 𝑏𝑖.
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The algorithm to compute the 𝐶𝑖,𝑗 values is identical to that of Theorem 8.10. We
now get that 𝑡 =

∑︀𝑟
𝑖=0

(︀
𝑑
𝑖

)︀
≤ 𝑂(𝑛4/5+𝜀) and similarly, 𝑢 ≤ 𝑂(𝑛2/5+𝜀), which leads to

a final running time of 𝑂(𝑛4𝜔/5+𝜀), as desired.

8.5 Faster Algorithms For MAX-SAT
Next, we apply our probabilistic PTFs for threshold functions to obtain faster algo-
rithms for MAX-SAT for sparse instances with 𝑐𝑛 clauses. We first consider MAX-
𝑘-SAT for small 𝑘 before solving the general problem:

Theorem 8.13. Given a 𝑘-CNF formula 𝐹 (or 𝑘-CSP instance) with 𝑛 variables and
𝑐𝑛 ≪ 𝑛4/(𝑘4 log6 𝑛) clauses, we can find an assignment that satisfies the maximum
number of clauses (constraints) of 𝐹 in randomized 2𝑛−𝑛/𝑂(𝑘4/3𝑐1/3 log(𝑘𝑐)) time.

Proof. We proceed as in the #𝑘-SAT algorithm of Chan and Williams [CW16]. We
first solve the decision problem of testing whether there is a variable assignment
satisfying more than 𝑡 clauses for a fixed 𝑡 ∈ [𝑐𝑛]. Let 𝑠 = 𝛼𝑛 for some parameter
𝛼 < 1/2 to be set later.

For 𝑗 ∈ [𝑐𝑛], define the function 𝐶𝑗(𝑥1, . . . , 𝑥𝑛) to output 1 if the 𝑗-th clause of
the given formula is satisfied, and 0 otherwise. Note that each 𝐶𝑗 can be expressed
as a polynomial of degree at most 𝑘.

Say that a variable is good if it occurs in at most 2𝑘𝑐 clauses. By the pigeonhole
principle, at least half of the variables are good, so we can find 𝑠 good variables
𝑥1, . . . , 𝑥𝑠. Let 𝑥𝑠+1, . . . , 𝑥𝑛 be the remaining variables, and let 𝐽 ⊂ [𝑐𝑛] be the set of
indices of all clauses 𝐶𝑗 that contain some occurrence of a good variable; note that
|𝐽 | = 𝑂(𝑘𝑐𝑠). Now for every variable assignment (𝑥𝑠+1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛−𝑠, we want
to compute

𝐹 (𝑥𝑠+1, . . . , 𝑥𝑛) :=
⋁︁

(𝑎1,...,𝑎𝑠)∈{0,1}𝑠

[︃
𝑐𝑛∑︁
𝑗=1

𝐶𝑗(𝑎1, . . . , 𝑎𝑠, 𝑥𝑠+1, . . . , 𝑥𝑛) > 𝑡

]︃
.

We will achieve this by computing for every 𝑡′ ∈ [𝑐𝑛]:

𝐺𝑡′(𝑥𝑠+1, . . . , 𝑥𝑛) :=
⋁︁

(𝑎1,...,𝑎𝑠)∈{0,1}𝑠

[︃∑︁
𝑗∈𝐽

𝐶𝑗(𝑎1, . . . , 𝑎𝑠, 𝑥𝑠+1, . . . , 𝑥𝑛) > 𝑡′

]︃
.

Let us define 𝑇 [𝑥𝑠+1, . . . , 𝑥𝑛] := 𝑡−
∑︀

𝑗 ̸∈𝐽 𝐶𝑗(0, . . . , 0, 𝑥𝑠+1, . . . , 𝑥𝑛). (Observe that
it is not a problem to set the good variables 𝑥1, . . . , 𝑥𝑠 to zero here, because we are
only summing over clauses that do not contain them.) Note that 𝑇 can be viewed
as a polynomial in 𝑛 − 𝑠 variables with only poly(𝑛) monomials. Therefore for all
(𝑥𝑠+1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛−𝑠, these 𝑇 -values can be precomputed in poly(𝑛)2𝑛−𝑠 time.
As these 𝑇 -values are measuring the contribution from the variables 𝑥𝑠+1, . . . , 𝑥𝑛 to
the number of satisfied clauses, we have

𝐹 (𝑥𝑠+1, . . . , 𝑥𝑛) = 𝐺𝑇 [𝑥𝑠+1,...,𝑥𝑛](𝑥𝑠+1, . . . , 𝑥𝑛).
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Applying Corollary 7.4 (in the exact setting), we can express any 𝐺𝑡′ as a sum of 2𝑠

probabilistic PTFs of degree 𝑘 ·𝑂((𝑘𝑐𝑠)1/3(𝑠+ log(𝑘𝑐𝑠))2/3), where each probabilistic
PTF computes an expression of the form

[︁∑︀
𝑗∈𝐽 𝑝𝑗(𝑥𝑠+1, . . . , 𝑥𝑛)

]︁
with error proba-

bility at most 1/(10 · 2𝑠), and for all 𝑗 ∈ 𝐽 we have deg(𝑝𝑗(𝑥𝑠+1, . . . , 𝑥𝑛)) ≤ 𝑘. The
number of monomials in our probabilistic PTF for 𝐺𝑡′ is at most

2𝑠 ·
(︂

𝑛− 𝑠
𝑘 ·𝑂((𝑘𝑐𝑠)1/3(𝑠+ log(𝑘𝑐𝑠))2/3)

)︂
≤ 2𝛼𝑛 ·𝑂

(︁ 𝑛

𝑘4/3𝑐1/3𝛼𝑛

)︁𝑂(𝑘4/3𝑐1/3𝛼𝑛)

≤ 2𝛼𝑛 · 2𝑂(𝑘4/3𝑐1/3𝛼 log 1
𝛼
)𝑛 ≪ 20.1𝑛

by setting 𝛼 to be a sufficiently small constant times 1/(𝑘4/3𝑐1/3 log(𝑘𝑐)). The same
bound holds for the construction time of the polynomial.

For each 𝑡′, we can evaluate the polynomial for 𝐺𝑡′ at all 2𝑛−𝑠 input values by
divide-and-conquer or dynamic programming using poly(𝑛)2𝑛−𝑠 arithmetic opera-
tions [Yat37, Wil14c] on poly(𝑛)-bit numbers. The total time is 2𝑛−𝑛/𝑂(𝑘4/3𝑐1/3 log(𝑘𝑐)).
As before, the error probability can be lowered by taking the majority values over
𝑂(𝑛) repetitions, and the original problem can be solved by calling the decision algo-
rithm for at most 𝑐𝑛 times.

Theorem 8.14. Given a CNF formula with 𝑛 variables and 𝑐𝑛≪ 𝑛4/ log10 𝑛 clauses,
we can find an assignment that satisfies the maximum number of clauses in random-
ized 2𝑛−𝑛/𝑂(𝑐1/3 log7/3 𝑐) time.

Proof. We use a standard width reduction technique [SST15] originally observed by
Schuler [Sch05] and studied closely by Calabro, Impagliazzo, and Paturi [CIP06].
Consider the following recursive algorithm:
∙ If all clauses have length at most 𝑘, then call the algorithm from Theorem 8.13

and return its output.
∙ Otherwise, pick a clause (𝛼1 ∨ · · · ∨ 𝛼ℓ) with ℓ > 𝑘. Return “SAT” if at least

one of the two following calls return “SAT”:
– Recursively solve the instance in which (𝛼1 ∨ · · · ∨𝛼ℓ) is replaced by (𝛼1 ∨
· · · ∨ 𝛼𝑘), and

– recursively solve the instance in which 𝛼1, . . . , 𝛼𝑘 are all assigned false.
Sakai, Seto, and Tamaki’s analysis for MAX-SAT [SST15] can be directly modified
to show that the total time of this algorithm remains 2𝑛−𝑛/𝑂(𝑘4/3𝑐1/3 log(𝑘𝑐)), when the
parameter 𝑘 is set to be a sufficiently large constant times log 𝑐.

For MAX-𝑘-SAT with 𝑘 ≤ 4, we can obtain a much better dependency on the
sparsity parameter 𝑐; in fact, we obtain significant speedup even for general dense
instances. The approach this time requires only our probabilistic polynomials for
threshold functions. Naively, the dense case seems to require threshold functions with
superlinearly many arguments, but by incorporating a few new ideas, we manage to
solve MAX-4-SAT using only 𝑂(𝑛)-variate threshold functions.

Theorem 8.15. Given a weighted 4-CNF formula 𝐹 with 𝑛 variables with positive
integer weights bounded by poly(𝑛), we can find an assignment that maximizes the
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total weight of clauses satisfied in 𝐹 , in randomized 2𝑛−𝑛/𝑂(log2 𝑛 log2 log𝑛) time. In
the sparse case when the clauses have total weight 𝑐𝑛, the time bound improves to
2𝑛−𝑛/𝑂(log2 𝑐 log2 log 𝑐).

Proof. (Dense case.) Let 𝑠 = 𝛼𝑛 for some parameter 𝛼 to be set later. Ar-
bitrarily divide the 𝑛 variables of 𝐹 into three groups: 𝑥 = {𝑥1, . . . , 𝑥(𝑛−𝑠)/2},
𝑦 = {𝑦1, . . . , 𝑦(𝑛−𝑠)/2}, and 𝑧 = {𝑧1, . . . , 𝑧𝑠}. As in Theorem 8.13, it suffices to solve
the decision problem of whether there exist 𝑥, 𝑦 ∈ {0, 1}(𝑛−𝑠)/2 and 𝑧 ∈ {0, 1}𝑠 such
that 𝑓(𝑥, 𝑦, 𝑧) > 𝑡, for a given degree-4 polynomial 𝑓 and a fixed 𝑡 ∈ [𝑛𝑐0 ] (for an
appropriately large constant 𝑐0). Since 𝑓 has degree 4, observe that each term has
either (a) at most one 𝑦 variable, (b) at most one 𝑥 variable, or (c) no 𝑧 variable. We
can thus write

𝑓(𝑥, 𝑦, 𝑧) =

(𝑛−𝑠)/2∑︁
𝑖=1

𝑓𝑖(𝑥, 𝑧)𝑦𝑖 +

(𝑛−𝑠)/2∑︁
𝑖=1

𝑔𝑖(𝑦, 𝑧)𝑥𝑖 + ℎ(𝑥, 𝑦)

where the 𝑓𝑖’s and 𝑔𝑖’s are degree-3 polynomials, and ℎ is a degree-4 polynomial.
For every 𝑥, 𝑦 ∈ {0, 1}(𝑛−𝑠)/2, it suffices to compute

𝐹 (𝑥, 𝑦) :=
∑︁

𝑧∈{0,1}𝑠
[𝑓(𝑥, 𝑦, 𝑧) > 𝑡] .

More generally, we compute for every 𝑡′ ∈ [𝑛𝑐0 ]:

𝐺𝑡′(𝑥, 𝑦) :=
∑︁

𝑧∈{0,1}𝑠
𝐻𝑧,𝑡′(𝑥, 𝑦),

with

𝐻𝑧,𝑡′(𝑥, 𝑦) :=

⎡⎣(𝑛−𝑠)/2∑︁
𝑖=1

𝑓𝑖(𝑥, 𝑧)𝑦𝑖 +

(𝑛−𝑠)/2∑︁
𝑖=1

𝑔𝑖(𝑦, 𝑧)𝑥𝑖 > 𝑡′

⎤⎦ .
Then 𝐹 (𝑥, 𝑦) = 𝐺𝑡−ℎ(𝑥,𝑦)(𝑥, 𝑦); we can precompute all ℎ(𝑥, 𝑦) values in poly(𝑛)2𝑛−𝑠

time.
The 𝐻𝑧,𝑡′(𝑥, 𝑦) predicate can be viewed as a weighted threshold function with 𝑂(𝑛)

arguments. To further complicate matters, these weights are not fixed: they depend
on 𝑥 and 𝑦. We resolve the issue by extending the vectors 𝑥 and 𝑦 and using a binary
representation trick.

For each vector 𝑥 ∈ {0, 1}(𝑛−𝑠)/2, define an extended vector 𝑥* where 𝑥*𝑖 = 𝑥𝑖
for each 𝑖 = 1, . . . , (𝑛 − 𝑠)/2 and 𝑥*𝑖,𝑗,𝑧 is the 𝑗-th least significant bit in the binary
representation of 𝑓𝑖(𝑥, 𝑧) for each 𝑖 = 1, . . . , (𝑛 − 𝑠)/2, 𝑗 = 0, . . . , ℓ and 𝑧 ∈ {0, 1}𝑠,
with ℓ = 𝑂(log 𝑛). Note that 𝑥* is a vector in 𝑂(𝑛 · log 𝑛 · 2𝑠) dimensions. Similarly,
for each vector 𝑦 ∈ {0, 1}(𝑛−𝑠)/2, define an extended vector 𝑦* where 𝑦*𝑖 = 𝑦𝑖 for
each 𝑖 = 1, . . . , (𝑛 − 𝑠)/2 and 𝑦*𝑖,𝑗,𝑧 is the 𝑗-th least significant bit in the binary
representation of 𝑔𝑖(𝑦, 𝑧) for each 𝑖 = 1, . . . , (𝑛 − 𝑠)/2, 𝑗 = 0, . . . , ℓ and 𝑧 ∈ {0, 1}𝑠.
We can precompute all extended vectors in 2(𝑛−𝑠)/2 · poly(𝑛)2𝑠 time.
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Then

𝐻𝑧,𝑡′(𝑥, 𝑦) :=
∑︁

(𝑡0,...,𝑡ℓ)

ℓ∏︁
𝑗=0

⎡⎣(𝑛−𝑠)/2∑︁
𝑖=1

𝑥*𝑖,𝑗,𝑧𝑦𝑖 +

(𝑛−𝑠)/2∑︁
𝑖=1

𝑦*𝑖,𝑗,𝑧𝑥𝑖 = 𝑡𝑗

⎤⎦ ,
where the outer sum is over all tuples (𝑡0, . . . , 𝑡ℓ) ∈ [𝑛𝑐0 ]ℓ with

∑︀ℓ
𝑗=0 2𝑗 · 𝑡𝑗 > 𝑡′.

By Fact 7.6.2, for each 𝑧 ∈ {0, 1}𝑠, 𝑗 = 0, . . . , ℓ, and 𝑡𝑗 ∈ [𝑛𝑐0 ], we can construct a
probabilistic polynomial (over R or F2) for the predicate

[︀∑︀
𝑖 𝑥

*
𝑖,𝑗,𝑧𝑦𝑖 +

∑︀
𝑖 𝑦

*
𝑖,𝑗,𝑧𝑥𝑖 = 𝑡𝑗

]︀
with degree 𝑂(

√
𝑛 log𝑆) with error probability at most 1/𝑆. By the union bound, the

probability that there is an error for some 𝑧, 𝑗, 𝑡𝑗 is at most 𝑂((1/𝑆) ·2𝑠 · log 𝑛 ·𝑛𝑂(1)),
which can be made at most 1/4𝑠, for example, by setting 𝑆 = 𝑛𝑐02𝑠 for a sufficiently
large constant 𝑐0. Thus, the degree for each predicate is 𝑂(

√
𝑛𝑠) (assuming 𝑠 ≥ log 𝑛).

For each 𝑧 ∈ {0, 1}𝑠 and 𝑡′ ∈ [𝑛𝑐0 ], by distributing over the product
∏︀ℓ

𝑗=0 we
can then construct a probabilistic polynomial for 𝐻𝑧,𝑡′(𝑥, 𝑦) with degree 𝑂(

√
𝑛𝑠ℓ) ≤

𝑂(
√
𝑛𝑠 log 𝑛). For a fixed 𝑧 and 𝑡′, such a polynomial is a function of 𝑂(𝑛 log 𝑛) free

variables in 𝑥* and 𝑦*, and therefore has at most
(︀

𝑂(𝑛 log𝑛)
𝑂(

√
𝑛𝑠 log𝑛)

)︀
monomials. The same

bound holds for the time needed to construct the probabilistic polynomial (note the
number of tuples (𝑡0, . . . , 𝑡ℓ) is 𝑛𝑂(log𝑛), which is a negligible factor).

For each 𝑡′ ∈ [𝑛𝑐0 ], we can thus construct a probabilistic polynomial for 𝐺𝑡′(𝑥, 𝑦)
with degree 𝑂(

√
𝑛𝑠 log 𝑛) over 𝑥* and 𝑦*, with the following number of monomials:

2𝑠 ·
(︂

𝑂(𝑛 log 𝑛)

𝑂(
√
𝑛𝑠 log 𝑛)

)︂
≤ 2𝛼𝑛 ·𝑂

(︂
𝑛 log 𝑛√
𝛼𝑛 log 𝑛

)︂𝑂(
√
𝛼𝑛 log𝑛)

≤ 2𝛼𝑛 · 2
√
𝛼𝑛(log(𝑛)) log(1/𝛼) ≪ 20.1(𝑛−𝑠)/2

by setting 𝛼 to be a sufficiently small constant times 1/(log 𝑛 · log log 𝑛)2. The same
bound holds for the construction time.

We can rewrite the polynomial for 𝐺𝑡′(𝑥, 𝑦) as the dot product of two vectors
𝜑(𝑥*) and 𝜓(𝑦*) of 20.1(𝑛−𝑠)/2 dimensions. The problem of evaluating 𝐺𝑡′(𝑥, 𝑦) over all
𝑥, 𝑦 ∈ {0, 1}(𝑛−𝑠)/2 then reduces to multiplying a 2(𝑛−𝑠)/2×20.1(𝑛−𝑠)/2 with a 20.1(𝑛−𝑠)/2×
2(𝑛−𝑠)/2 matrix (over R or F2), which can be done in poly(𝑛)2𝑛−𝑠 time (Lemma 8.1).
The total time is 2𝑛−𝑛/𝑂(log2 𝑛 log2 log𝑛).

Proof. (Sparse case.) If the clauses have total weight 𝑐𝑛, we can refine the anal-
ysis above, as follows. Let 𝜇𝑖 and 𝜈𝑖 be the maximum value of 𝑓𝑖(𝑥, 𝑧) and 𝑔𝑖(𝑦, 𝑧)
respectively. We know that

∑︀
𝑖(𝜇𝑖 + 𝜈𝑖) ≤ 𝑐𝑛. The variable 𝑥*𝑖,𝑗,𝑧 is needed only when

𝑗 ≤ log(𝜇𝑖), and the variable 𝑦*𝑖,𝑗,𝑧 is needed only when 𝑗 ≤ log(𝜈𝑖). For each 𝑧, 𝑗, 𝑡𝑗,
the probabilistic polynomial for the predicate[︃∑︁

𝑖

𝑥*𝑖,𝑗,𝑧𝑦𝑖 +
∑︁
𝑖

𝑦*𝑖,𝑗,𝑧𝑥𝑖 = 𝑡𝑗

]︃

has degree 𝑂(
√
𝑛𝑗𝑠), where 𝑛𝑗 is the number of 𝑖’s with 𝜇𝑖 ≥ 2𝑗 or 𝜈𝑖 ≥ 2𝑗.

Observe that 𝑛𝑗 = 𝑂(𝑐𝑛/2𝑗). It follows that the degree for the 𝐻𝑧,𝑡′(𝑥, 𝑦)
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polynomial is 𝑂(
∑︀ℓ

𝑗=0

√
𝑛𝑗𝑠) = 𝑂(

√
𝑛𝑠 log 𝑐 +

∑︀
𝑗>log 𝑐

√︀
(𝑐𝑛/2𝑗)𝑠) = 𝑂(

√
𝑛𝑠 log 𝑐).

The number of variables in 𝐻𝑧,𝑡′(𝑥, 𝑦) is at most 𝑂(
∑︀ℓ

𝑗=0 𝑛𝑗) = 𝑂(𝑛 log 𝑐 +∑︀
𝑗>log 𝑐(𝑐𝑛/2

𝑗)) = 𝑂(𝑛 log 𝑐).
Thus, the bound on the total number of monomials becomes

2𝑠 ·
(︂

𝑂(𝑛 log 𝑐)

𝑂(
√
𝑛𝑠 log 𝑐)

)︂
≤ 2𝛼𝑛 ·𝑂

(︂
𝑛 log 𝑐√
𝛼𝑛 log 𝑐

)︂𝑂(
√
𝛼𝑛 log 𝑐)

≤ 2𝛼𝑛 · 2
√
𝛼𝑛 log 𝑐 log(1/𝛼) ≪ 20.1(𝑛−𝑠)/2

by setting 𝛼 to be a sufficiently small constant times 1/(log 𝑐 log log 𝑐)2.

8.6 Circuit Satisfiability Algorithms
In this Section, we give new algorithms for solving the SAT problem on some rather
expressive circuit classes. First, we outline some notions used in all of these algo-
rithms.

8.6.1 Satisfiability on a Cartesian Product

In intermediate stages of our SAT algorithms, we will study the following generaliza-
tion of SAT, where the task is to find a SAT assignment in a “Cartesian product” of
possible assignments.

Definition 8.1. Let 𝑛 be even, and let 𝐴,𝐵 ⊆ {0, 1}𝑛/2 be arbitrary. The SAT
problem on the set 𝐴 × 𝐵 is to determine if a given 𝑛-input circuit has a satisfying
assignment contained in the set 𝐴×𝐵.

Recall that a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} is a linear threshold function
(LTF) if there are 𝑎1, . . . , 𝑎𝑛, 𝑡 ∈ R such that for all 𝑥 ∈ {0, 1}𝑛, 𝑓(𝑥) = 1 ⇐⇒∑︀

𝑖 𝑎𝑖𝑥𝑖 ≥ 𝑡.
Let 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 ∘ LTF[𝑍, 𝑆] be the class of circuits with a layer of 𝑆 LTFs at the bot-

tom (nearest the inputs), with 𝑍 additional arbitrary gates above that layer. Let
𝐶𝑖𝑟𝑐𝑢𝑖𝑡 ∘ SUM ∘ AND[𝑍, 𝑆] be the analogous circuit class, but with 𝑆 DNFs at the
bottom layer with property that each DNF always has at most one conjunct true
for every variable assignment. (Thus we may think of the DNF as simply an integer
sum.) We first prove that the SAT problem for 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 ∘ LTF can be reduced to the
SAT problem for 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 ∘ SUM ∘ AND, utilizing a weight reduction trick that can
be traced back to Matoušek’s algorithm for computing dominances in high dimen-
sions [Mat91, Wil14b]:

Lemma 8.5. Let 𝐴,𝐵 ⊆ {0, 1}𝑛/2, with |𝐴| = |𝐵| = 𝑁 ≤ 2𝑛. Let 𝐾 ∈ [1, 𝑁 ] be an
integer parameter. The SAT problem for 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 ∘ LTF[𝑍, 𝑆] circuits on the set 𝐴×𝐵
can be reduced to the SAT problem for 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 ∘ SUM ∘ AND[𝑍, 𝑆] where each DNF
has at most 𝑂(log𝐾) terms and each AND has fan-in at most 2 log𝐾, on a prescribed
set 𝐴′ × 𝐵′ with |𝐴′| = |𝐵′| = 𝑁 and 𝐴′, 𝐵′ ⊆ {0, 1}2𝑆 log𝐾. The reduction has the
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property that if the latter SAT problem can be solved in time 𝑇 , then the former SAT
problem can be solved in time (𝑇 +𝑁2 · 𝑍2/𝐾 +𝑁 · 𝑆) · poly(𝑛).

Proof. For a given circuit 𝐶 of type 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 ∘ LTF[𝑍, 𝑆], let the 𝑗th LTF in the bottom
layer have weights 𝛼𝑗,1, . . . , 𝛼𝑗,𝑛, 𝑡𝑗. Let the assignments in 𝐴 be 𝑎1, . . . , 𝑎𝑁 , and let
the assignments in 𝐵 be 𝑏1, . . . , 𝑏𝑁 . Denote the 𝑘th bit of 𝑎𝑖 and 𝑏𝑖 as 𝑎𝑖[𝑘] and 𝑏𝑖[𝑘],
respectively.

Make 𝑁 × 𝑆 matrices 𝑀𝐴 and 𝑀𝐵, where

𝑀𝐴(𝑖, 𝑗) =

𝑛/2∑︁
𝑘=1

𝛼𝑗,𝑘 · 𝑎𝑖[𝑘]

and

𝑀𝐵(𝑖, 𝑗) = 𝑡𝑗 −
𝑛/2∑︁
𝑘=1

𝛼𝑗,𝑛/2+𝑘 · 𝑏𝑖[𝑘].

The key property of these matrices is that 𝑀𝐴(𝑖, 𝑗) ≥ 𝑀𝐵(𝑖′, 𝑗) if and only if the
𝑛-variable assignment (𝑎𝑖, 𝑏𝑖′) makes the 𝑗th LTF output 1.

For each 𝑗 = 1, . . . , 𝑆, let 𝐿𝑗 be the list of all 2 · 𝑁 entries in the 𝑗th column
of 𝑀𝐴 and the 𝑗th column of 𝑀𝐵, sorted in increasing order. Partition 𝐿𝑗 into 𝐾
contiguous parts of 𝑂(𝑁/𝐾) entries each, and think of each part of 𝐿𝑗 as containing
a set of 𝑂(𝑁/𝐾) assignments from 𝐴 ∪ 𝐵. (So, the partition of 𝐿𝑗 is construed as a
partition of the assignments in 𝐴 ∪ 𝐵.) There are two possible cases for a satisfying
assignment to the circuit 𝐶:

1. There is a satisfying assignment (𝑎𝑖, 𝑏𝑖′) ∈ 𝐴×𝐵 such that for some 𝑗 = 1, . . . , 𝑆,
𝑎𝑖 and 𝑏𝑖′ are in the same part of 𝐿𝑗. By enumerating every 𝑎𝑖 ∈ 𝐴, every
𝑗 = 1, . . . , 𝑆, and all 𝑂(𝑁/𝐾) assignments 𝑏𝑖′ of 𝐵 which are in the same part
of 𝐿𝑗 as 𝑎𝑖, then evaluating the circuit 𝐶 on the assignment (𝑎𝑖, 𝑏𝑖′) in 𝑍2·poly(𝑛)
time, we can determine satisfiability for this case in 𝑂(𝑁 ·𝑁/𝐾 · 𝑍2) · poly(𝑛)
time. If this does not uncover a SAT assignment, we move to the second case.

2. There is a satisfying assignment (𝑎𝑖, 𝑏𝑖′) ∈ 𝐴 × 𝐵 such that for every 𝑗 =
1, . . . , 𝑆, 𝑎𝑖 and 𝑏𝑖′ are different parts of 𝐿𝑗. Then for every LTF gate 𝑗 =
1, . . . , 𝑆 on the bottom layer of the circuit, we claim that the 𝑗-th LTF can be
replaced by a sum of 𝑂(log𝐾) ANDs on 2 log𝐾 new variables. In particular, for
the 𝑗-th LTF we define one new set of log𝐾 variables which encodes the index
𝑘 = 1, . . . , 𝐾 such that 𝑎𝑖 is in part 𝑘 of 𝐿𝑗, and another set of log𝐾 variables
which encodes the index 𝑘′ such that 𝑏𝑖′ is in part 𝑘′ of 𝐿𝑗. Then, determining
[𝑘 ≥ 𝑘′] is equivalent to determining whether (𝑎𝑖, 𝑏𝑖′) satisfies the 𝑗-th LTF gate.
Finally, note that the predicate [𝑘 ≥ 𝑘′] can be computed by a DNF of 𝑂(log𝐾)
conjuncts. (Take an OR over all ℓ = 0, . . . , log𝐾, guessing that the ℓ-th bit is
the most significant bit in which 𝑘 and 𝑘′ differ; we can verify that guess with a
conjunction on 2 log𝐾 variables.) On every possible input (𝑘, 𝑘′) ∈ {0, 1}2 log𝐾 ,
the DNF has at most one true conjunction. Thus we can construe the OR as
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simply an integer sum of ANDs, as desired. Preparing these new assignments
for this new SAT problem takes time 𝑂(𝑁 · 𝑆) · poly(𝑛).

8.6.2 Simulating LTFs with AC0 of MAJORITY

In our SAT algorithms, we will need a way to simulate LTFs with bounded-depth
circuits with MAJORITY gates. This was also used in Williams’ work on solving
ACC-LTF SAT [Wil14b], as a black box. However, here we must pay careful atten-
tion to the details of the construction. In fact, we will actually have to modify the
construction slightly in order for our circuit conversion to work out. Let us review the
construction here, and emphasize the parts that need modification for this algorithm.
Recall that MAJ denotes the majority function.

Theorem 8.16 (Follows from [MT98], Theorem 3.3). Every LTF can be computed
by polynomial-size AC0 ∘MAJ circuits. Furthermore, the circuits can be constructed
in polynomial time given the weights of the LTF, and the fan-in of each MAJ gate can
be made 𝑛1+𝜀, for every desired 𝜀 > 0, and the circuit has depth 𝑂(log(1/𝜀)).

It will be crucial for our final results that the fan-in of the MAJ gates can be made
arbitrarily close to linear.

Proof. We begin by revisiting the circuit construction of Maciel and Thérien [MT98],
which shows that the addition of 𝑛 distinct 𝑛-bit numbers can be performed with
polynomial-size AC0 ∘MAJ circuits. The original construction of Maciel and Thérien
yields MAJ gates of fan-in �̃�(𝑛2), which is too large for our purposes. We can reduce
the fan-in of MAJ gates to 𝑂(𝑛1+𝜀) by setting the parameters differently in their
construction. Let us sketch their construction in its entirety, then describe how to
modify it.

Recall that SYM denotes the class of symmetric functions. First, we show that
addition of 𝑛 𝑛-bit numbers can be done in AC0 ∘ SYM. Suppose the 𝑛-bit numbers
to be added are 𝐴1, . . . , 𝐴𝑛, where 𝐴𝑖 = 𝐴𝑖,𝑛 · · ·𝐴𝑖,1 for 𝐴𝑗,𝑖 ∈ {0, 1}. Maciel and
Thérien partition each 𝐴𝑖 into 𝑚 blocks of ℓ bits, where 𝑚 · ℓ = 𝑛. They compute the
sum 𝑆𝑘 of the 𝑛 ℓ-bit numbers in each block 𝑘 = 1, . . . ,𝑚, i.e.

𝑆𝑘 =
𝑛∑︁

𝑖=1

ℓ∑︁
𝑗=1

𝐴𝑖,(𝑘−1)ℓ+𝑗 · 2𝑗−1,

and note that the desired sum is

𝑧 =
𝑚∑︁
𝑘=1

𝑆𝑘 · 2(𝑘−1)ℓ.

Each 𝑆𝑘 can be represented in ℓ + log 𝑛 bits. Maciel and Thérien set ℓ = log 𝑛, so
that each 𝑆𝑘 is represented by 2ℓ bits. They then split each 𝑆𝑘 into ℓ-bit numbers 𝐻𝑘

and 𝐿𝑘 such that
𝑆𝑘 = 𝐻𝑘 · 2ℓ + 𝐿𝑘.
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Note that the “high” part 𝐻𝑘 corresponds to the “carry bits” of 𝑆𝑘. They then note
that if

𝑦1 :=
𝑚∑︁
𝑘=1

𝐻𝑘 · 2𝑘ℓ, 𝑦2 :=
𝑚∑︁
𝑘=1

𝐿𝑘 · 2(𝑘−1)ℓ,

we have
(a) 𝑧 = 𝑦1 + 𝑦2, and
(b) each bit of 𝑦𝑖 is a function of exactly one 𝐻𝑘 or 𝐿𝑘 for some 𝑘. In turn, each

𝐿𝑘, 𝐻𝑘 is a sum of 𝑛 · ℓ 𝐴𝑖,𝑗’s where each 𝐴𝑖,𝑗 is multiplied by a power of two
in [0, 2ℓ]. Therefore, each bit of 𝑦𝑖 can be computed by a SYM gate of fan-in at
most 𝑛 · ℓ · 2ℓ ≤ 𝑛2.

We have therefore reduced the addition of 𝑛 𝑛-bit numbers to adding the two
𝑂(𝑛)-bit numbers 𝑦1 and 𝑦2, with a layer of SYM gates. Adding two numbers can be
easily computed in AC0 (see for example [CFL85]), so the whole circuit is of the form
AC0 ∘ SYM.

We wish to reduce the fan-in of the SYM gates to 𝑂(𝑛1+𝜀) for arbitrary 𝜀 > 0.
To reduce the fan-in further, it suffices to find a construction that lets us reduce ℓ.
Naturally, we can try to set ℓ = 𝜀 log 𝑛 for arbitrarily small 𝜀 ∈ (0, 1). Without
loss of generality, let us assume 1/𝜀 is an integer. Then, each 𝑆𝑘 is represented in
ℓ + log 𝑛 ≤ (1 + 1/𝜀)ℓ bits. Let 𝑡 = 1 + 1/𝜀. If we then split each 𝑆𝑘 into 𝑡 ℓ-bit
numbers 𝑇 𝑡−1

𝑘 , . . . , 𝑇 0
𝑘 , ranging from high-order to low-order bits, we then have

𝑆𝑘 = 𝑇 𝑡−1
𝑘 · 2(𝑡−1)ℓ + · · ·+ 𝑇 1

𝑘 · 2ℓ + 𝑇 0
𝑘 .

Defining the 𝑡 numbers

𝑦𝑖 :=
𝑚∑︁
𝑘=1

𝑇 𝑖
𝑘 · 2(𝑘+𝑖−1)ℓ,

the desired sum is 𝑧 =
∑︀𝑡−1

𝑖=0 𝑦𝑖. Just as before, each bit of 𝑦𝑖 is a function of exactly
one 𝑇 𝑖

𝑘 for some 𝑘, which is a sum of 𝑛 · ℓ 𝐴𝑖,𝑗’s where each 𝐴𝑖,𝑗 is multiplied by an
integer in [0, 2ℓ]. Hence each bit of 𝑦𝑖 can be computed by a SYM gate of fan-in at
most 𝑛 · ℓ · 2ℓ ≤ �̃�(𝑛1+𝜀). So with one layer of SYM gates, we have reduced the 𝑛
number 𝑛-bit addition problem to the addition of 𝑡 𝑂(𝑛)-bit numbers 𝑦0, . . . , 𝑦𝑡−1.
But for 𝑡 ≤ log 𝑛, addition of 𝑡 𝑛-bit numbers can be computed by AC0 circuits
of poly(𝑛)-size and fixed depth independent of 𝑡 (see e.g. [Vol99, p.14-15]). This
completes the description of our AC0 ∘ SYM circuit.

Observe that each SYM gate can be easily represented by an OR ∘ AND ∘ MAJ
circuit. In particular, the OR is over all 𝑗 ∈ {0, 1, . . . , 𝑛} such that the SYM gate
outputs 1 when given 𝑗 inputs are equal to 1, and the AND ∘ MAJ part computes∑︀

𝑗 𝑥𝑗 = 𝑗. Again, the fan-in of each MAJ here is �̃�(𝑛1+𝜀).
We now apply the addition circuits to show how every LTF on 𝑛 variables can be

represented by a polynomial-size AC0 ∘ MAJ circuit. Suppose our LTF has weights
𝑤1, . . . , 𝑤𝑛+1, computing

∑︀𝑛
𝑗=1𝑤𝑗𝑥𝑗 ≥ 𝑤𝑛+1. By standard facts about LTFs, we may

assume for all 𝑗 that |𝑤𝑗| ≤ 2𝑏𝑛 log2 𝑛 for some constant 𝑏 > 0. Set 𝑊 = 𝑏𝑛 log2 𝑛.
Let 𝐷 be a AC0 ∘ MAJ circuit for adding 𝑛 𝑊 -bit numbers as described above,
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where each MAJ gate has fan-in �̃�(𝑛1+𝜀). For all 𝑗 = 1, . . . , 𝑛, connect to the 𝑗th
𝑊 -bit input of 𝐷 a circuit which, given 𝑥𝑗, feeds 𝑤𝑗 to 𝐷 if the input bit 𝑥𝑖𝑗 = 1,
and the all-zero 𝑊 -bit string if 𝑥𝑗 = 0. Observe this extra circuitry is only wires, no
gates: we simply place a wire from 𝑥𝑗 to all bits of the 𝑗th 𝑊 -bit input where the
corresponding bit of 𝑤𝑗 equals 1.

This new circuit 𝐷′ clearly computes the linear form
∑︀𝑛

𝑗=1𝑤𝑗𝑥𝑗. The linear form
can then be compared to 𝑤𝑛+1 with an AC0 circuit, since the “less-than-or-equal-to”
comparison of two integers can be performed in AC0. Indeed, this function can be
represented as a quadratic-size DNF (SUM∘AND), as was noticed in Lemma 8.5. We
now have an AC0 ∘MAJ circuit 𝐷′′ of size poly(𝑊, 𝑡) ≤ 𝑛𝑏 computing the LTF, where
the MAJ gates have fan-in �̃�(𝑛1+𝜀).

8.6.3 Satisfiability for ACC of LTF of LTF

Let AC0[𝑑,𝑚] ∘ LTF ∘ LTF[𝑆1, 𝑆2, 𝑆3] be the class of circuits with a layer of 𝑆3 LTFs
at the bottom layer (nearest the inputs), a layer of 𝑆2 LTFs above the bottom layer,
and a size 𝑆1 AC0[𝑚] circuit of depth 𝑑 above the two LTF layers.

Theorem 8.17. For every integer 𝑑 > 0, 𝑚 > 1, and 𝛿 > 0, there is an 𝜀 > 0 and
an algorithm for satisfiability of AC0[𝑑,𝑚]∘LTF∘LTF[2𝑛𝜀

, 2𝑛𝜀
, 𝑛2−𝛿] circuits that runs

in deterministic 2𝑛−𝑛𝜀 time.

Before giving the proof, we first sketch the ideas in this SAT algorithm for ACC0 ∘
LTF∘LTF. Similar to the SAT algorithm for ACC0 ∘LTF circuits [Wil14b], the bottom
layer of LTFs can be replaced by a layer of DNFs, via a weight reduction trick. We
replace LTFs in the middle layer with AC0 ∘MAJ circuits (modifying a construction of
Maciel and Thérien [MT98] to keep the fan-in of MAJ gates low), then replace these
MAJ gates of 𝑛2−Θ(𝛿) fan-in with probabilistic F2-polynomials of degree 𝑛1−Θ(𝛿)+Θ(𝜀)

over a small sample space, provided by Theorem 7.4. Taking a majority vote over all
samples, and observing that an F2-polynomial is a MOD2 ∘ AND circuit, we obtain a
MAJ ∘ACC0 circuit, but with 2𝑛1−𝑂(𝛿) size in some of its layers. By carefully applying
known depth reduction techniques, we can convert the circuit into a depth-two circuit
of size 2𝑛1−Ω(𝜀) which can then be evaluated efficiently on many inputs. (This is not
obvious: applying the Beigel-Tarui depth reduction to a 2𝑂(𝑛1−𝜀)-size circuit would
make its new size quasi-polynomial in 2𝑂(𝑛1−𝜀), yielding an intractable bound of 2𝑛𝑂(1) .)

We now move on to the proof of Theorem 8.17. We use the following depth-
reduction theorem of Beigel and Tarui (with important constructibility issues clarified
by Allender and Gore [AG94], and recent size improvements by Chen and Papakon-
stantinou [CP19]):

Theorem 8.18 ([BT94, AG94]). Every SYM ∘ACC circuit of size 𝑠 can be simulated
by a SYM ∘ AND circuit of 2(log 𝑠)𝑐

′
size for some constant 𝑐′ depending only on the

depth 𝑑 and MOD𝑚 gates of the ACC part. Moreover, the AND gates of the final
circuit have only (log 𝑠)𝑐

′ fan-in, the final circuit can be constructed from the original
in 2𝑂((log 𝑠)𝑐

′
) time, and the final symmetric function at the output can be computed in

2𝑂((log 𝑠)𝑐
′
) time.
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Proof of Theorem 8.17. Let 𝜀 > 0 be a parameter to be set later. The plan is to
start with a circuit as specified in the theorem statement, and slowly convert into a
nice form that can be evaluated efficiently on many inputs.

1. Trade Variables for Circuit Size. Our first step is standard for ACC-SAT
algorithms [Wil14b, Wil14c]: given an AC0[𝑑,𝑚] ∘ LTF ∘ LTF[2𝑛𝜀

, 2𝑛𝜀
, 𝑛2−𝛿] circuit 𝐶

with 𝑛 variables, create a copy of the circuit 𝐶𝑣 := 𝐶(𝑣, ·) for all possible assignments
𝑣 ∈ {0, 1}𝑛𝜀 to the first 𝑛𝜀 variables of 𝐶, and define

𝐶 ′(𝑥𝑛𝜀+1, . . . , 𝑥𝑛) :=
⋁︁
𝑣

𝐶𝑣(𝑥𝑛𝜀+1, . . . , 𝑥𝑛).

Observe that 𝐶 ′ is satisfiable if and only if 𝐶 is satisfiable, 𝐶 ′ has size at most 2𝑂(𝑛𝜀),
𝐶 ′ is also an AC0 ∘ LTF ∘ LTF circuit, and 𝐶 ′ has only 𝑛− 𝑛𝜀 variables.

2. Replace the middle LTFs with MAJORITYs (Theorem 8.16). Note
that each LTF on the second layer of 𝐶 ′ has fan-in at most 𝑛2−𝛿 + 𝑛, since the
number of LTFs on the first layer is 𝑛2−𝛿. Applying the low fan-in transformation of
Theorem 8.16, we can replace each of the LTFs on the second layer of 𝐶 ′ with poly(𝑛)-
size AC0 ∘MAJ circuits where each MAJ has fan-in at most 𝑛2−𝛿/2. This generates at
most 2𝑑𝑛𝜀 new MAJ gates in the circuit 𝐶 ′, for some constant 𝑑 > 0, and produces a
circuit of type

ACC0 ∘MAJ ∘ LTF.

3. Replace those MAJORITYs with (derandomized) probabilistic poly-
nomials over F2 (Theorem 7.4). We replace each of these new MAJ gates with
our low-randomness probabilistic polynomials for the MAJORITY function, as fol-
lows. Recall from Theorem 7.4 that we can construct a probabilistic polynomial over
F2 for 𝑘-bit MAJORITY with degree 𝑂(

√︀
𝑘 log(1/𝜀′)) and error at most 𝜀′, using a

distribution of 𝑘𝑂(log(𝑘/𝜀′)) uniformly chosen F2-polynomials. Setting 𝑘 := 𝑛2−𝛿/2 for
the fan-in of the MAJ gates, and the error to be 𝜀′ := 1/22𝑑𝑛𝜀 , the degree becomes

𝐷 := 𝑂
(︁√

𝑛2−𝛿/2 · 2𝑑𝑛𝜀
)︁
≤ 𝑂(𝑛1−𝛿/4+𝜀/2)

and the sample space has size 𝑆 = 𝑛𝑂(𝑛𝜀). For 𝜀≪ 𝛿/4, we have 𝐷 := 𝑂(𝑛1−𝛿/8), and
each polynomial in our sample space has at most

(︀
𝑛2−𝛿

𝑛1−𝛿/8

)︀
≤ 2𝑂(𝑛1−𝛿/8 log𝑛) monomials.

For every choice of the random seed 𝑟 to the probabilistic polynomial, let 𝐶 ′
𝑟 be the

circuit 𝐶 ′ with the corresponding F2 polynomial 𝑃𝑟 substituted in place of each MAJ
gate. That is, each MAJ gate is substituted by an XOR of 2𝑂(𝑛1−𝛿/8 log𝑛) ANDs of fan-in
at most 𝑂(𝑛1−𝛿/8).

We now form a circuit 𝐶 ′′ which takes a majority vote over all 2𝑂(𝑛𝜀 log𝑛) circuits
𝐶 ′

𝑟. The new circuit 𝐶 ′′ therefore has the form

MAJ ∘ ACC0 ∘ XOR ∘ AND ∘ LTF,

where the MAJ ∘ACC0 part has size 2𝑂(𝑛𝜀 log𝑛), and each XOR ∘AND ∘ LTF subcircuit
has size 2𝑂(𝑛1−𝛿/8 log𝑛). Since our probabilistic polynomial computes MAJORITY with
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1/22𝑑𝑛𝜀 error and there are at most 2𝑑𝑛𝜀
MAJ gates in 𝐶 ′, the new circuit 𝐶 ′′ is

equivalent to the original circuit 𝐶 ′.
4. Apply Beigel–Tarui to the top of the circuit, and distribute. It is

very important to observe that we cannot apply Beigel–Tarui (Theorem 8.18) to the
entire circuit 𝐶 ′′, as its total size is 2Ω(𝑛1−𝛿/8 log𝑛), and the quasi-polynomial blowup
of Beigel–Tarui would generate a huge circuit of size Ω(2𝑛), rendering our conversion
intractable.

However, the top MAJ ∘ ACC0 part is still small. Invoking the depth reduction
lemma of Beigel and Tarui (Theorem 8.18 above), we can replace the MAJ ∘ ACC0

part in 𝐶 ′′ of size 2𝑂(𝑛𝜀 log𝑛) (even though it has 2𝑂(𝑛𝜀 log𝑛) inputs from the XOR layer!)
with a SYM∘AND circuit of size 2𝑛𝑎·𝜀 for a constant 𝑎 ≥ 1, where each AND has fan-in
at most 𝑛𝑎𝜀, and 𝑎 depends only on the (constant) depth 𝑑 and (constant) modulus
𝑚 of the ACC0 subcircuit.

The resulting circuit 𝐶3 now has the form

SYM ∘ AND ∘ XOR ∘ AND ∘ LTF.

Applying the distributive law to the AND ∘ XOR parts, where the ANDs have fan-in
at most 𝑛𝑎𝜀 and the XORs have fan-in 2𝑂(𝑛1−𝛿/8 log𝑛), each AND ∘ XOR parts can be
converted into an XOR∘AND circuit of size 2𝑂(𝑛1−𝛿/8+𝑎𝜀 log𝑛), where the fan-in of ANDs
is at most 𝑛𝑎𝜀. Letting 𝜀 ≪ 𝛿/(𝑐𝑎) for sufficiently large 𝑐 ≥ 1, the fan-in of the new
XORs is at most 2𝑂(𝑛1−𝜀). We now have a circuit 𝐶4 of the form

SYM ∘ XOR ∘ AND ∘ LTF.

Note that the fan-in of the SYM gate is at most 2𝑛𝑎·𝜀 , and the fan-in of the (merged)
ANDs is 𝑂(𝑛1−𝛿/8+𝑎𝜀).

5. Apply modulus-amplifying polynomials to eliminate the XOR layer.
We’d like to remove the XOR layer, to further reduce the depth of the circuit. But
as the gates of this layer have very high fan-in, we must be careful not to blow the
circuit size up to Ω(2𝑛). The following construction will take advantage of the fact
that we have only poly(𝑛) total gates in the bottom LTF layer.

We apply one step of Beigel-Tarui’s transformation [BT94] (from ACC0 to SYM ∘
AND) to the SYM∘XOR∘AND part of our circuit. In particular, we apply a modulus-
amplifying polynomial 𝑃 (over the integers) of degree 2𝐷′ = 2𝑛𝑎·𝜀 to each of the
XOR ∘ AND parts. Construing the XOR ∘ AND as a sum of products

∑︀∏︀
, the

polynomial 𝑃 has the property:
∙ If the

∑︀∏︀
= 1 mod 2, then 𝑃 (

∑︀∏︀
) = 1 mod 2𝐷′ .

∙ If the
∑︀∏︀

= 0 mod 2, then 𝑃 (
∑︀∏︀

) = 0 mod 2𝐷′ .
So, composing 𝑃 with each XOR ∘ AND part, each 𝑃 outputs either 0 or 1 modulo
2𝑛𝑎·𝜀 . The key property here is that the modulus exceeds the fan-in of the SYM gate,
so the sum of all 𝑃 (

∑︀∏︀
) simply counts the number of XOR ∘ ANDs which are true;

this is enough to determine the output of the SYM gate. Construing the output of
each bottom LTF gate as a variable, there are at most 2𝑛𝜀 · 𝑛2−𝜀 variables (𝑛2−𝜀 for
each of the 2𝑛𝜀 copies of the circuit from step 1 above). Expressing each 𝑃 (

∑︀∏︀
)
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(expanded as a sum of products) as a multilinear polynomial in these LTF variables,
the total number of terms is at most(︂

2𝑛𝜀 · 𝑛2−𝜀

𝐷′ · 𝑛1−𝛿/8+𝑎𝜀

)︂
≤ 2𝑂(𝐷′·𝑛1−𝛿/8+𝑎𝜀·𝑛𝜀) ≤ 2𝑂(𝑛2𝑎·𝜀+1−𝛿/8+𝜀).

Let 𝜀 := 𝛿/(𝑐𝑎) for a sufficiently large constant 𝑐 > 1 so that 2𝑎𝜀+ 1− 𝛿/8 + 𝜀 < 1− 𝜀
(it suffices to pick any 𝑐 > 16(1 + 1/𝑎)). We can then merge the sum of all 𝑃 (

∑︀∏︀
)’s

into the SYM gate, and obtain a SYM ∘ AND circuit where the SYM has fan-in

2𝑂(𝑛2𝑎·𝜀+1−𝛿/8+𝜀) ≤ 2𝑂(𝑛1−𝜀),

and the AND gates have fan-in 𝑂(𝑛2𝑎·𝜀+1−𝛿/8+𝜀) ≤ 𝑂(𝑛1−𝜀). The result is a circuit 𝐶4

of the form
SYM ∘ AND ∘ LTF.

6. Replace the bottom threshold gates with DNFs (Theorem 8.5), and
distribute. Note that the circuit 𝐶4 has 𝑛−𝑛𝜀 variables, so our SAT algorithm would
follow if we could evaluate 𝐶4 on all of its variable assignments in 2𝑛−𝑛𝜀 ·poly(𝑛) time.
We are now in a position to apply Lemma 8.5, which lets us reduce the evaluation
problem for SYM ∘ AND ∘ LTF circuits to the evaluation problem for SYM ∘ AND ∘
SUM ∘ AND circuits, with a parameter 𝐾 that needs setting. Recall the middle AND
gates have fan-in 𝑂(𝑛1−𝜀), and the fan-in of the SUM is 𝑂(log𝐾). Therefore by the
distributive law, we can rewrite the circuit as a SYM∘SUM∘AND circuit, where each
SUM gate has (log𝐾)𝑂(𝑛1−𝜀) ANDs below it, and at most one AND below each SUM
is true. Thus we can wire these AND gates directly into the top SYM gate without
changing the output.

In more detail, let 𝐴,𝐵 = {0, 1}(𝑛−𝑛𝜀)/2, and set 𝑁 = 2(𝑛−𝑛𝜀)/2 and the integer
parameter 𝐾 := 2𝑏·𝑛1−𝜀 for a sufficiently large constant 𝑏 > 1. By Lemma 8.5, we
can reduce the SAT problem for SYM ∘ AND ∘ LTF circuits of size 2𝑂(𝑛1−𝜀) on the set
𝐴×𝐵 = {0, 1}𝑛−𝑛𝜀 to the SAT problem for SYM ∘ SUM ∘ AND circuits of size

2𝑂(𝑛1−𝜀) · 22𝑏𝑛1−𝜀 · 𝑛2−𝛿 ≤ 2𝑂(𝑛1−𝜀)

on a prescribed set 𝐴′ × 𝐵′ with |𝐴′| = |𝐵′| = 𝑁 and 𝐴′, 𝐵′ ⊆ {0, 1}2𝑏𝑛2−𝛿·𝑛1−𝜀 . By
the distributive argument from the previous paragraph, we can convert the SYM ∘
SUM ∘ AND circuit into a SYM ∘ AND circuit of size at most

2𝑂(𝑛1−𝜀) · 2𝑂(𝑛1−𝜀 log log𝐾) ≤ 2𝑂(𝑛1−𝜀 log(𝑛)).

By Lemma 8.5, we know that if the SYM ∘ AND SAT problem is solvable in time 𝑇
on the set 𝐴′ × 𝐵′, then the SAT problem for 𝐶4 on the set 𝐴 × 𝐵 can be solved in
time 𝑂 (𝑇 +𝑁2 · 𝑍/𝐾 +𝑁 · 𝑆) · poly(𝑛).

7. Evaluate the depth-two circuit on many pairs of points. By applying
fast rectangular matrix multiplication in a now-standard way [Wil14c, Wil14b], the
resulting SYM ∘AND circuit of 2�̃�(𝑛1−𝜀) size can be evaluated on all points in 𝐴′×𝐵′,
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in time poly(𝑛) · 2𝑛−𝑛𝜀 , thus solving its SAT problem. Therefore, the SAT problem
for 𝐶4 can be solved in time

poly(𝑛) · 2𝑛−𝑛𝜀

+
2𝑛−𝑛𝜀 · 2𝑂(𝑛1−𝜀)

2𝑏·𝑛1−𝜀 + 2
𝑛−𝑛𝜀

2 · 2𝑂(𝑛1−𝜀 log(𝑛)).

Setting 𝑏 > 1 to be sufficiently large, we obtain a SAT algorithm for 𝐶4 (and hence
the original circuit 𝐶) running in poly(𝑛) · 2𝑛−𝑛𝜀 time. �

8.6.4 Satisfiability for Three Layers of Majority and AC0

In this section, we give our SAT algorithm for MAJ ∘ AC0 ∘ LTF ∘ AC0 ∘ LTF circuits
with low-polynomial fan-in at the output gate and the middle LTF layer:

Theorem 8.19. For all 𝜀 > 0 and integers 𝑑 ≥ 1, there is a 𝛿 > 0 and a randomized
satisfiability algorithm for MAJ ∘AC0 ∘ LTF ∘AC0 ∘ LTF circuits of depth 𝑑 running in
2𝑛−Ω(𝑛𝛿) time, on circuits with the following properties:
∙ the top MAJ gate, along with every LTF on the middle layer, has 𝑂(𝑛6/5−𝜀)

fan-in, and
∙ there are 𝑂(2𝑛𝛿

) many AND/OR gates (anywhere) and LTF gates at the bottom
layer.

We need one more result concerning probabilistic polynomials over the integers:

Theorem 8.20 ([BRS91, Tar93]). For every AC0 circuit 𝐶 with 𝑛 inputs and size 𝑠,
there is a distribution of 𝑛-variate polynomials 𝒟 over Z such that every 𝑝 has degree
poly(log 𝑠) (depending on the depth of 𝐶) and for all 𝑥 ∈ {0, 1}𝑛, Pr𝑝∼𝒟[𝐶(𝑥) =
𝑝(𝑥)] ≥ 1− 1/2poly(log 𝑠).

Proof of Theorem 8.19. The SAT algorithm is somewhat similar in structure
to Theorem 8.17, but with a few important changes. Most notably, we work with
probabilistic polynomials over Z instead of F2.

Start with a circuit 𝐶 of the required form. Let 𝑠 be the number of AND/OR
gates in 𝐶 plus the number of LTF gates on the bottom layer. Let 𝑓 ≤ 𝑛6/5−𝜀 be the
maximum fan-in of the top MAJ gate and the LTFs on the middle layer, and recall
that we’re planning to consider 𝐶 with size at most 2𝑛𝛿 where 𝛿 > 0 is a sufficiently
small constant (depending on 𝜀 > 0 and the circuit depth) in the following. Our SAT
algorithm runs as follows:

1. By Theorem 8.16, every LTF of fan-in 𝑓 can be replaced by an AC0 ∘MAJ of
fan-in 𝑓 1+𝑜(1) and poly(𝑓) size. Hence we can reduce 𝐶 to a circuit of similar
size, but of the form

MAJ ∘ AC0 ∘MAJ ∘ AC0 ∘MAJ.

The fan-ins of the majority gates in the middle and bottom layer can be made
at most 𝑛6/5−𝜀′ , for any 𝜀′ > 0 which is smaller than 𝜀. To be concrete, let us
set 𝜀′ := 𝜀/2.
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2. Replace the “middle” majority gates of fan-in 𝑛6/5−𝜀/2 with probabilistic polyno-
mials (over Z) of degree 𝑛3/5−𝜀/4poly(log 𝑠) and error 1/2poly(log 𝑠) [AW15] (Theo-
rem 7.4 from the previous Chapter). Replace all the AC0 subcircuits of size 𝑠 by
probabilistic polynomials (over Z) of degree poly(log 𝑠) and error 1/2poly(log 𝑠),
via Lemma 8.20. Note that the latter poly(log 𝑠) factor depends on the depth
of the circuit.

3. Replace the majority gate at the output (of fan-in 𝑓 ≤ 𝑛6/5−𝜀) with the proba-
bilistic PTF of Corollary 7.4, setting the threshold parameter 𝑠′ (which is called
𝑠 in the statement of the corollary) to be 22𝑛𝛿 and setting the error (called 𝜀 in
the statement of the corollary) to be 1/𝑓 . The resulting polynomial has degree
𝑛2/5−𝜀/3 · poly(𝑛𝛿).

Applying the distributive law to all the polynomials from steps 2 and 3, the
new circuit 𝐶 ′ can be viewed as an integer sum of at most 𝑇 AND∘LTF circuits
of at most 𝑇 size, where

𝑇 = 2𝑛3/5−𝜀/4·𝑛2/5−𝜀/3·poly(log 𝑠,𝑛𝛿) = 2𝑛1−7𝜀/12·poly(log 𝑠,𝑛𝛿)

and all AND gates have fan-in at most 𝑛1−7𝜀/12 · poly(log 𝑠, 𝑛𝛿) (because the
resulting polynomial has at most this degree).

Now is a good time to mention our choice of 𝛿, as it will considerably clean up
the exponents in what follows. We will choose 𝛿 > 0 to be sufficiently small
so that the poly(log 𝑠, 𝑛𝛿) factor in the exponent of 𝑇 is less than 𝑛𝜀/12. That
is, we take 𝛿 := 𝜀/𝑐 and the size parameter 𝑠 < 2𝑛𝛿

= 2𝑛𝜀/𝑐 , for a sufficiently
large constant 𝑐 ≥ 12. (Note that 𝑐 depends on the depth of the circuit, since
the degree of the poly log factor depends on the depth.) Thus we have the size
bound

𝑇 = 2𝑛1−7𝜀/12·poly(log 𝑠,𝑛𝛿) ≤ 𝑂(2𝑛1−7𝜀/12·𝑛𝜀/12

) ≤ 𝑂(2𝑛1−𝜀/2

),

and all AND gates have fan-in at most 𝑛1−𝜀/2.

4. For all assignments 𝑎 to the first 𝑛𝛿 variables of 𝐶 ′, plug 𝑎 into 𝐶 ′, creating a
copy 𝐶 ′

𝑎. Let 𝐶 ′′ be the integer sum of all 2𝑛𝛿 circuits 𝐶 ′
𝑎. By the properties of

the polynomial constructed in Theorem 7.6 and the chosen parameter 𝑠′ = 22𝑛𝛿 ,
with probability at least 2/3 there is a (computable) threshold value 𝑣 = 3𝑠/2
such that

∙ 𝐶 ′′(𝑥) > 𝑣 when at least one 𝐶 ′
𝑎(𝑥) outputs 1, and

∙ 𝐶 ′′(𝑥) < 𝑣 when all 𝐶 ′
𝑎(𝑥) output 0.

The circuit 𝐶 ′′ is a Sum-of-AND∘LTF circuit; note that 𝐶 ′′ has 𝑛−𝑛𝛿 variables.

5. We now want to evaluate 𝐶 ′′ on all of its 2𝑛−𝑛𝛿 possible variable assignments.
Applying Lemma 8.5 for an integer parameter 𝐾 ∈ [2𝑛] (to be determined),
𝑁 = 2(𝑛−𝑛𝛿)/2, and 𝑍, 𝑆 = 2𝑛1−𝜀/2 , we can convert this evaluation problem for
𝐶 ′′ into a corresponding evaluation problem for a Sum-of-AND ∘ SUM ∘ AND
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circuit 𝐶 ′′′, on an appropriate combinatorial rectangle 𝐴′×𝐵′ of 2𝑛−𝑛𝛿 variable
assignments in total. The relative size of the circuit is unchanged, as each
SUM∘AND has size 𝑂(log2𝐾) ≤ 𝑂(𝑛2). The time for conversion of 𝐶 ′′ into 𝐶 ′′′

is (︂
𝑁2𝑍2

𝐾
+𝑁 · 𝑆

)︂
· poly(𝑛) ≤ 2𝑛−𝑛𝛿 · 22𝑛1−𝜀/2 · poly(𝑛)

𝐾
.

Setting 𝐾 := 22𝑛1−𝜀/2 makes this time bound 2𝑛−Ω(𝑛𝛿).

Recall that in the Sum-of-AND∘SUM∘AND circuit 𝐶 ′′′, the fan-in of the middle
ANDs is at most 𝑛1−𝜀/2, and each SUM has 𝑂(𝑛) fan-in. We can therefore apply
the distributive law to each AND∘SUM part, and obtain a SUM∘AND of size at
most 𝑛𝑂(𝑛1−𝜀/2). Merging the SUMs into the SYM gate, we obtain a SYM ∘AND
circuit of size at most 𝑛𝑂(𝑛1−𝜀/2).

6. Finally, applying rectangular matrix multiplication (Lemma 8.1) we can evalu-
ate the Sum-of-AND 𝐶 ′′′ of 𝑛𝑂(𝑛1−𝜀/2) size on the combinatorial rectangle 𝐴′×𝐵′

in 2𝑛−Ω(𝑛𝛿) time, by preparing matrices of dimensions 2𝑛/2−Ω(𝑛𝛿)×𝑛𝑂(𝑛1−𝜀/2) (for
𝐴′) and 𝑛𝑂(𝑛1−𝜀/2)×2𝑛/2−Ω(𝑛𝛿) (for 𝐵′), then multiplying them. Note that prepar-
ing these matrices takes time no more than 2𝑛/2+𝑂(𝑛1−𝜀/2 log𝑛), which is negligible
for us.

After multiplying the matrices, we obtain a value for 𝐶 ′′(𝑥) for each assignment
𝑥, which is correct with probability at least 2/3. By repeating steps 2-5 for
100𝑛 times, we obtain correct values on all 2𝑛−𝑛𝛿 points with high probability.

This completes the proof. �
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Part III

Probabilistic Rank and Matrix
Rigidity
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Chapter 9

Background and Overview

Let 𝑅 be any commutative ring. The rank-𝑟 rigidity of a matrix 𝐻 ∈ 𝑅𝑁×𝑁 , denoted
R𝐻(𝑟), is the minimum Hamming distance between 𝐻 and any matrix of rank at
most 𝑟. Ever since Leslie Valiant introduced the notion of matrix rigidity [Val77], it
has been a major challenge to construct interesting rigid matrices. Valiant and other
complexity theorists have shown that explicit rigid matrices would yield new lower
bounds for a number of different models of computation. The two most interesting
rigidity parameter regimes for a family {𝑀𝑁}𝑁∈N of matrices, where 𝑀𝑁 is a 𝑁 ×𝑁
matrix, are as follows:

∙ {𝑀𝑁}𝑁∈N is called Valiant-rigid if there is a constant 𝜀 > 0 such that

R𝑀𝑁
(𝑁/ log log𝑁) ≥ Ω(𝑁1+𝜀).

Valiant [Val77] showed that the linear transformations corresponding to Valiant-
rigid matrices cannot be computed by 𝑂(𝑁)-size 𝑂(log𝑁)-depth arithmetic
circuits. There are currently no known lower bounds showing that such circuits
cannot compute any explicit families of matrices.

∙ {𝑀𝑁}𝑁∈N is called Razborov-rigid if there is any super-constant function
𝛼(𝑁) = 𝜔(1) such that

R𝑀𝑁
(2(log log𝑁)𝛼(𝑁)

) ≥ Ω(𝑁2).

Razborov [Raz89] (see also [Wun12]) showed that if the communication matrix
𝑀𝑓 of a Boolean function 𝑓 is Razborov-rigid, then 𝑓 is not in PHcc, the commu-
nication analogue of the polynomial hierarchy. There are currently no explicit
Boolean functions known to be outside PHcc.

We say {𝑀𝑁}𝑁∈N is explicit if there is a deterministic algorithm which, on input 𝑁 ,
outputs the matrix 𝑀𝑁 in poly(𝑁) time. Aiming for a deterministic algorithm is
important, since random matrices are known to be very rigid with high probability.
Indeed, a random such matrix 𝑅𝑁 has R𝑅𝑁

(𝑟) ≥ Ω
(︁

(𝑁−𝑟)2

log𝑁

)︁
for all 𝑟 with high
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probability1 [Val77].
Despite decades of work and many known applications of rigid matrices, there

has not been much success in actually constructing rigid matrices for almost any
interesting rank parameter. There are essentially only three known deterministic
constructions:

∙ For all ranks 𝑟, there is a family of 𝑁 ×𝑁 matrices 𝑀𝑁 constructible in P with
R𝑀𝑁

(𝑟) ≥ Ω
(︁

𝑁2

𝑟
log(𝑁/𝑟)

)︁
[Fri93, SSS97]. This is proved via a combinatorial

argument (“untouched minor argument”), and it is known that this type of
approach cannot be further improved [Lok00].

∙ A counting argument shows there is a family of 𝑁×𝑁 matrices 𝑅𝑁 over a finite
field F𝑞 with R𝑅𝑁

(𝑟) ≥ Ω (𝑁2) for all 𝑟 = 𝑜(𝑁). By combining a brute-force
search for such rigid matrices with a padding argument (see Lemma 11.5 below),
we can construct an 𝑁×𝑁 matrix 𝐿𝑁 in TIME[exp(𝑟2)] with R𝐿𝑁

(𝑟) ≥ Ω(𝑁2).

∙ Goldreich and Tal [GT16] show that random 𝑁×𝑁 Toeplitz matrices 𝑇𝑁 over a
finite field F𝑞 have R𝑇𝑁

(𝑟) ≥ Ω
(︁

𝑁3

𝑟2 log𝑁

)︁
for all 𝑟 ≥

√
𝑁 with high probability.

Their proof is primarily combinatorial and linear algebraic. Since random𝑁×𝑁
Toeplitz matrices over F2 are defined by 𝑂(𝑁) random bits, such rigid matrices
can be constructed in ENP.

Over large fields F, there are also approaches to constructing matrices which are
rigid by virtue of having very large entries. For instance, an ‘algebraic dimension’
approach [SS96] can be used to construct rigid matrices over C with algebraically
independent entries [Lok00, Lok06]. In this dissertation, we focus mainly on matrix
rigidity over constant-size finite fields F𝑝𝑟 where such techniques cannot work.

In this Part of the dissertation, we make new progress on the problem of con-
structing rigid matrices by using new techniques which haven’t yet been used in this
area. First, in Chapter 10, we define a generalization of the polynomial method in-
volving a new variant on the rank of a matrix called probabilistic rank, and use it
to give a number of new rigidity upper bounds. We will give rigidity upper bounds
for matrices which were previously conjectured to be very rigid, and give new con-
nections between rigidity, circuit complexity, and communication complexity. Our
probabilistic rank constructions use our probabilistic polynomial constructions from
earlier in Chapter 7, together with the connection between sparse polynomials and
low-rank matrices we explored in Chapter 8

Second, in Chapter 11, we give a new construction of rigid matrices. Our construc-
tion makes use of ideas from circuit complexity theory which hadn’t been used before
in this context, and gives the first nontrivial construction of a family of Razborov-
rigid matrices (although it is not an ‘explicit’ family of matrices as we discuss shortly).
Interestingly, both our new rigidity upper bounds and lower bounds make use of the
polynomial method: our new construction of rigid matrices critically uses a polyno-
mial method algorithm for counting orthogonal vectors.

1By comparison, one can see that R𝑅𝑁
(𝑟) ≤ (𝑁 − 𝑟)2 for all 𝑟 and all 𝑁 ×𝑁 matrices 𝑅𝑁 .
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9.1 Our Results

9.1.1 Probabilistic Rank and Matrix Rigidity

Let𝑅 be a commutative ring. In analogy with the notion of a probabilistic polynomial,
we define a probabilistic matrix over 𝑅 to be a distribution of matrices ℳ ⊂ 𝑅𝑛×𝑛.
A probabilistic matrixℳ computes a matrix 𝐴 ∈ 𝑅𝑛×𝑛 with error 𝜀 > 0 if for every
entry (𝑖, 𝑗) ∈ [𝑛]2,

Pr
𝐵∼ℳ

[𝐴[𝑖, 𝑗] = 𝐵[𝑖, 𝑗]] ≥ 1− 𝜀.

In this way, a probabilistic matrix is a worst-case randomized representation of a fixed
matrix. A probabilistic matrixℳ has rank 𝑟 if the maximum rank of a 𝑀 ∼ℳ is 𝑟.

We define the 𝜀-probabilistic rank of a matrix 𝑀 ∈ 𝑅𝑛×𝑛 to be the minimum
rank of a probabilistic matrix computing 𝑀 with error 𝜀. Such probabilistic matrices
are of interest and potentially very useful, because some full rank matrices can be
represented by probabilistic matrices of rather low rank. For example, every iden-
tity matrix has 𝜀-probabilistic rank 𝑂(1/𝜀) over any field, by simulating a protocol
for EQUALITY using log(1/𝜀) + 𝑂(1) communication that computes random inner
products (cf. Theorem 10.5).

Probabilistic rank is related to the use of probabilistic polynomials in algorithm
design. We saw in Chapter 8 how substituting low-degree probabilistic polynomials
in place of common subroutines can be very useful for speeding up the best known
running times for many core problems. All our algorithmic applications ended up
embedding the low-degree polynomial evaluation problem in a fast multiplication of
two low-rank (rectangular) matrices (see Lemma 8.2 above). That is, this algorithmic
work is really using the fact that that various circuits and subroutines from core
algorithms have low probabilistic rank, and is applying low-rank representations to
obtain an algorithmic speedup. Because “low probabilistic rank” is potentially a far
broader notion than that of “low-degree probabilistic polynomials”, it makes more
sense to study probabilistic rank directly, in the hopes of finding stronger algorithmic
applications.

Probabilistic rank is also very related to matrix rigidity: it is not hard to see
that probabilistic rank upper bounds imply rigidity upper bounds. In Chapter 10,
we consider complexity-theoretic aspects of probabilistic rank. We demonstrate how
probabilistic rank is a powerful notion for understanding matrix rigidity, and some
models of communication complexity where knowledge is still sparse.

Hadamard Ain’t So Rigid. Among the many attempts to prove arithmetic circuit
lower bounds via rigidity, perhaps the most commonly studied explicit matrix has
been the Walsh-Hadamard transform [PS88, Alo90, Gri, Nis, KR98, Cod00, Lok01,
LTV03, Mid05, dW06b, Ras16]:

Definition 9.1. For vectors 𝑥, 𝑦 ∈ R𝑑, let ⟨𝑥, 𝑦⟩ denote their inner product. Let
𝑣1, . . . , 𝑣2𝑛 ∈ {0, 1}𝑛 be the enumeration of all 𝑛-bit vectors in lexicographical or-
der. The Walsh-Hadamard matrix 𝐻𝑛 is the 2𝑛 × 2𝑛 matrix defined by 𝐻𝑛(𝑣𝑖, 𝑣𝑗) :=
(−1)⟨𝑣𝑖,𝑣𝑗⟩.
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It was believed that 𝐻𝑛 is rigid because its rows are mutually orthogonal (i.e., 𝐻𝑛

is Hadamard), so in several of the above references, only that property was assumed of
the matrices. The best rigidity lower bounds known for 𝐻𝑛 have the form ℛ𝐻𝑛(𝑟) ≥
Ω(4𝑛/𝑟); for the target rank 𝑟 = 𝑂(2𝑛/ log 𝑛) in Valiant’s problem, the lower bound
is only Ω(2𝑛 log 𝑛). It was a folklore theorem that one can modify only 𝑂(𝑛) entries
of an 𝑛 × 𝑛 Hadamard matrix and make its rank at most 𝑛/2 [Lok14], but it was
believed that for lower rank many more entries would require modification.

We give a good excuse for the weakness of these lower bounds:

Theorem 9.1 (Non-Rigidity of Hadamard Matrices). For every commutative ring
𝑅, for every sufficiently small 𝜀 > 0, and for all 𝑛, we have ℛ𝐻𝑛

(︀
2𝑛−𝑓(𝜀)𝑛

)︀
≤ 2𝑛(1+𝜀)

over 𝑅, for a function 𝑓 where 𝑓(𝜀) = Θ(𝜀2/ log(1/𝜀)).

In fact, we show a strong non-rigidity upper bound: by modifying at most 2𝜀𝑛

entries in each row of 𝐻𝑛, the rank of 𝐻𝑛 drops to 2𝑛−𝑓(𝜀)𝑛. That is, the matrix
rigidity approach to arithmetic circuit lower bounds does not apply to Hadamard
matrices such as the Walsh-Hadamard transform, since it is not Valiant-rigid. We
would have required lower bounds of the form ℛ𝐻𝑛(2𝑛/(log 𝑛)) ≥ 2𝑛(1+𝜀) for some
𝜀 > 0 to obtain circuit lower bounds, but the upper bound of Theorem 9.1 shows this
is impossible.

We do not (yet) believe that the Walsh-Hadamard transform has 𝑂(2𝑛)-size 𝑂(𝑛)-
depth circuits; a more appropriate conclusion is that rigidity is too coarse to ad-
equately capture the lower bound problem in this case. Having said that, The-
orem 9.1 does imply new circuit constructions: it follows that there is a depth-
two unbounded fan-in arithmetic circuit for the Walsh-Hadamard transform with
2𝑛+𝑂(𝜀 log(1/𝜀))𝑛 + 22𝑛−Ω(𝜀2𝑛) gates; setting 𝜀 > 0 appropriately, we have a 4𝛿𝑛-size cir-
cuit for some 𝛿 < 1.

We also show non-trivial rigidity upper bounds for 𝐻𝑛 in the Razborov-rigidity
regime that would be useful for communication complexity, where the rigidity is much
closer to 4𝑛.

Theorem 9.2 (Non-Rigidity of Hadamard Matrices, Part II). For every integer
𝑟 ∈ [22𝑛], one can modify at most 22𝑛/𝑟 entries of 𝐻𝑛 and obtain a matrix of rank
(𝑛/ ln(𝑟))𝑂(

√
𝑛 log(𝑟)).

While the product of rank and rigidity (a natural measure) of 𝐻𝑛 is only known

to be at least Ω(4𝑛), Theorem 9.2 provides an upper bound of 4𝑛 · 𝑛𝑂
(︁√

𝑛 log(𝑟)
)︁
/𝑟.

This is not small enough to refute the conjectured rigidity lower bounds required for
communication complexity applications, but as we show later, these upper bounds
still have non-trivial consequences for the communication complexity of IP2 (the Inner
Product Modulo 2 function).

New Applications of Explicit Rigid Matrices. Rigidity has been studied pri-
marily for its connections to communication complexity and to lower bounds on arith-
metic circuits computing linear transformations. We show new implications of con-
structing explicit rigid matrices for Boolean circuit complexity.
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First, we show how explicit rigidity lower bounds would yield Boolean circuit lower
bounds where only somewhat weak results are known:

Theorem 9.3. Let 𝑅 be an arbitrary commutative ring, and {𝑀𝑛} be a family of
Boolean matrices such that (a) 𝑀𝑛 is 𝑛× 𝑛, (b) there is a poly(log 𝑛) time algorithm
𝐴 such that 𝐴(𝑛, 𝑖, 𝑗) prints 𝑀𝑛(𝑖, 𝑗), and (c) there is a 𝛿 > 0 such that for infinitely
many 𝑛, ℛ𝑀𝑛

(︁
2(log𝑛)1−𝛿

)︁
≥ 𝑛2

2(log𝑛)𝛿/2
over 𝑅.

Then the language {(𝑛, 𝑖, 𝑗) | 𝑀𝑛(𝑖, 𝑗) = 1} ∈ P does not have AC0 ∘ LTF ∘ AC0 ∘ LTF
circuits of 𝑛2−𝜀-size and 𝑜(log 𝑛/ log log 𝑛)-depth, for all 𝜀 > 0.

The theorem is obtained by giving non-trivial probabilistic rank bounds for such
circuits, building on Lokam [Lok01]. Therefore, proving rigidity (or probabilistic
rank) lower bounds for explicit 0/1 matrices over a commutative ring 𝑅 would imply
nearly-quadratic size lower bounds for AC0 ∘ LTF ∘ AC0 ∘ LTF circuits of unbounded
depth, a powerful class of Boolean circuits. The best known lower bounds, which we
proved above in Corollary 6.1 and Theorem 8.17, are that functions in the huge class
ENP do not have such circuits.

Sign-Rank Rigidity. The sign rank of a −1/1 matrix 𝑀 is the lowest rank of a
matrix 𝑁 over R such that sign(𝑀 [𝑖, 𝑗]) = sign(𝑁 [𝑖, 𝑗]), for all (𝑖, 𝑗). Lower bounds
on the sign-rank of matrices were used 15 years ago to prove exponential lower bounds
against LTF∘MAJ and LTF∘SYM circuits [For02, FKL+01], i.e. restricted versions of
depth-two threshold circuits. We extend the sign-rank connection to a circuit class for
which strong lower bounds have long been open: explicit matrices with high rigidity
under sign-rank would imply strong depth-two threshold circuit lower bounds. (Here,
sign-rank rigidity is defined in the natural way, with “rank” replaced with “sign-rank”
in the rigidity definition.)

A corollary of a theorem of Razborov and Sherstov [RS10] (see Theorem 10.13
below) is that for all 𝑛, 𝐻𝑛 has sign-rank 𝑟-rigidity at least Ω(4𝑛/𝑟), just as in the
case of normal rank rigidity. We show that even a somewhat minor improvement
would already imply exponential-size lower bounds for depth-two linear threshold
circuits with unbounded weights on both layers, a problem open for decades [HMP+93,
KW16]:

Theorem 9.4. Suppose the sign rank 𝑟-rigidity of 𝐻𝑛 is Ω(4𝑛/𝑟.999) for some rank
bound 𝑟 ≥ 2𝛼𝑛 and some 𝛼 > 0. Then the Inner Product Modulo 2 requires 2Ω(𝑛)-size
LTF ∘ LTF circuits.

Theorem 10.14 below gives a more general statement. Under the hood is an upper
bound: matrices defined by small LTF ∘ LTF circuits have low probabilistic sign-rank :
for every such circuit of 𝑠 gates, viewing its truth table as a 2𝑛/2× 2𝑛/2 matrix, there
is a distribution of 𝑂(𝑠2𝑛2/𝜀)-rank matrices which sign-represent the truth table in a
worst-case probabilistic sense with error 𝜀.

153



Rigidity, Communication, and Probabilistic Rank: An Equivalence. Prob-
abilistic rank arises very naturally in studying generalized models of communication
complexity. For a Boolean function 𝑓 : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1}, let 𝑀𝑓 be the
2𝑛× 2𝑛 truth table matrix of 𝑓 with 𝑀𝑓 [𝑥, 𝑦] = 𝑓(𝑥, 𝑦) for all 𝑥, 𝑦. The following cor-
respondence between probabilistic rank and communication complexity is immediate
(one could even take the proposition as a definition of BP ·MOD𝑚P communication
complexity).

Proposition 9.1. Let 𝑚 > 1 be an integer, let 𝑓 : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1}, and
let 𝑀𝑓 be its truth table matrix. The BP · MOD𝑚P communication complexity of 𝑓
with error 𝜀 equals the (base-2) logarithm of the 𝜀-probabilistic rank of 𝑀𝑓 over Z𝑚

(within additive constants).

Similarly, AM (Arthur-Merlin communication complexity) is equivalent to proba-
bilistic Boolean rank.

It’s easy to see that if a matrix has 𝜀-probabilistic rank 𝑟, then its rank-𝑟 rigidity
is at most 𝜀22𝑛; thus rigidity lower bounds imply communication lower bounds. But
conversely, it seems easier to prove lower bounds on probabilistic rank compared to
rigidity: with probabilistic rank, we need to rule out a “distribution” of erroneous
matrix entries which are required to “spread the errors” around; with rigidity, we
have to rule out any adversarial choice of bad entries.

We show that for every randomly self-reducible function 𝑓 : {0, 1}2𝑛 → 𝑅 in which
the self-reduction makes 𝑘 non-adaptive queries, low rigidity implies low probabilistic
rank: the 𝜀-probabilistic rank of its corresponding matrix is at most (𝑘𝑟)𝑘 if its rank-𝑟
rigidity is at most 𝜀 · 4𝑛. Thus there is a strong relationship between 𝜀-probabilistic
rank (and communication complexity, by Proposition 9.1) and the rank for which the
rigidity is an 𝜀-fraction of the matrix. For the Walsh-Hadamard transform, we prove
that the probabilistic rank of 𝐻𝑛 and the rigidity of 𝐻𝑛 are equivalent concepts:

Theorem 9.5. For every commutative ring 𝑅 and for every 𝑛, ℛ𝐻𝑛(𝑟) ≤ 𝜀 · 4𝑛 over
𝑅 if and only if 𝐻𝑛 has 𝜀-probabilistic rank 𝑟 over 𝑅.

The matrices 𝐻𝑛 represent the communication matrices of the widely-studied In-
ner Product Modulo 2 (IP2) function. By Proposition 9.1, the BP · MOD𝑝P com-
munication complexity of IP2 and the rigidity of 𝐻𝑛 over F𝑝 are really equivalent
concepts. Applying this theorem, our earlier rigidity upper bounds also imply some
modest but interesting improvements on communication complexity protocols. From
the rigidity upper bound of Theorem 10.2, we obtain a communication protocol for
IP2 with 𝑂(

√︀
𝑛 log(1/𝜀) log( 𝑛

log(1/𝜀)
)) bits and error 𝜀 in the BP ·MOD𝑝P communi-

cation model, for every prime 𝑝. (Aaronson and Wigderson gave an MA protocol
for IP with 𝑂(

√
𝑛 log(𝑛/𝜀)) communication complexity and error 𝜀 [AW09]; ours is

more efficient for 𝜀≪ 1/2
√
log𝑛.) Applying Theorem 10.1 yields an IP2 protocol with

𝑛(1− Ω(𝜀2/ log(1/𝜀))) communication and only 1/2𝑛−𝜀𝑛 error. We are skeptical that
our rigidity upper bounds for 𝐻𝑛 are tight; we hope these results will aid future work
(to prove rigidity upper bounds, one only has to think about communication protocols
for IP2).
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9.1.2 Efficient Construction of Rigid Matrices Using an NP
Oracle

In Chapter 11, we give a new construction of rigid matrices. Unlike the previous
constructions (which we enumerated near the beginning of this Chapter), which pri-
marily use combinatorial and algebraic techniques, our construction primarily uses
complexity-theoretic ideas. Our matrices are Razborov-rigid, and we can prove new
lower bounds in communication complexity, Boolean circuit complexity, and arith-
metic circuit complexity.

Constructions of Rigid Matrices in PNP

Our main result is a construction of a rigid matrix in PNP:

Theorem 9.6 (An Infinitely Often Rigid Matrix Construction in PNP). There is an
absolute constant 𝛿 > 0 such for all prime powers 𝑞 = 𝑝𝑟 and all constants 𝜀 > 0:

∙ There is a PNP machine 𝑀 such that, for infinitely many 𝑁 , on input 1𝑁 , 𝑀
outputs an 𝑁 ×𝑁 matrix 𝐻𝑁 ∈ {0, 1}𝑁×𝑁 such that R𝐻𝑁

(2(log𝑁)1/4−𝜀
) ≥ 𝛿 ·𝑁2

over F𝑞.

By comparison, applying previously known techniques to construct rigid 𝑁 × 𝑁
matrices 𝑀𝑁 for this rank 𝑟 = 2(log𝑁)1/4−𝜀 , one either obtains:

∙ 𝑀𝑁 constructible in P with only R𝑀𝑁
(𝑟) ≥ Ω

(︁
𝑁2

2(log𝑁)1/4−𝜀

)︁
, or

∙ 𝑀𝑁 only constructible in TIME[exp(exp((log𝑁)1/4−𝜀))] with R𝑀𝑁
(𝑟) ≥ Ω (𝑁2).

Note that the time bound here is larger than any quasi-polynomial in 𝑁 , which
can be written as exp(exp(log log𝑁)).

Our construction in Theorem 9.6 is in PNP, and achieves R𝑀𝑁
(𝑟) ≥ Ω (𝑁2).

It is natural to ask whether one can improve the constant 1/4− 𝜀 in the rank in
Theorem 9.6. We show an interesting “win-win” theorem: either the constant can be
improved from 1/4− 𝜀 to 1− 𝜀, or NQP ̸⊂ P/poly follows.

Theorem 9.7 (Either a Better Construction in PNP or NQP ̸⊂ P/poly). There is an
absolute constant 𝛿 > 0 such that for all prime powers 𝑞 = 𝑝𝑟 and all constants 𝜀 > 0,
at least one of the following holds:

∙ NQP ̸⊂ P/poly.

∙ There is a PNP machine 𝑀 such that, for infinitely many 𝑁 , on input 1𝑁 , 𝑀
outputs an 𝑁 ×𝑁 matrix 𝐻𝑁 ∈ {0, 1}𝑁×𝑁 such that R𝐻𝑁

(2(log𝑁)1−𝜀
) ≥ 𝛿 ·𝑁2

over F𝑞.

Theorem 9.7 is interesting from the perspective of proving circuit lower bounds.
Recall that a main motivation for constructing rigid matrices is to construct an explicit
function which cannot be computed by 𝑂(𝑛)-size 𝑂(log 𝑛)-depth circuits [Val77]. If

155



we aim to show that NE (or ENP) does not admit such circuits (which is still open),
then we can safely assume NE ⊂ P/poly before constructing the required rigid matrices.
Therefore, if one could further improve the construction in the second bullet of the
above Theorem 9.7 to match the Valiant-rigid parameters (which would require 𝑁×𝑁
matrices 𝐻𝑁 with R𝐻𝑁

(𝑁/ log log𝑁) ≥ 𝑁1+𝜀 for any 𝜀 > 0, i.e. an improved rank
parameter in exchange for a worsened rigidity parameter), it would imply that ENP

does not have 𝑂(𝑛)-size 𝑂(log 𝑛)-depth circuits.

Applications

Using the many different connections between rigid matrices and different areas of
complexity theory, including a new connection we prove in Chapter 10, we derive
from our construction a number of new lower bounds.

PHcc Lower Bound for NTIME[2(log𝑛)𝜔(1)
]NP. A longstanding open problem in com-

munication complexity is to prove a PHcc (the communication complexity analogue of
the polynomial hierarchy) lower bound for an explicit function [BFS86] (see [GPW18]
for a recent reference). In fact, even for the much weaker subclass AMcc, it is a
notoriously open question to prove an 𝜔(log 𝑛) lower bound for any explicit func-
tion [GPW16, CW19a]. Prior to this, it was even open whether ENP ⊂ AMcc, i.e.,
whether every function in ENP has an efficient AM communication protocol.

Recall that Razborov-rigid matrices are known to yield lower bounds against PHcc:

Lemma 9.1 ([Raz89], see also [Wun12]). Letting 𝑓 be a function in PHcc, the 2𝑛×2𝑛

communication matrix 𝑀𝑓 of 𝑓 has R𝑀𝑓
(2(log𝑛/𝜀)𝑐) ≤ 𝜖 · 4𝑛, where 𝜀 > 0 is arbitrary

and 𝑐 > 0 is a constant depending only on 𝑓 , but not 𝑛.

Using this, our construction of rigid matrices in Theorem 9.6 immediately shows
that ENP ̸⊂ PHcc, giving the first non-trivial lower bound against PHcc. In fact, our
rigidity bound is for a much higher rank than is necessary for applying Lemma 9.1
(setting 𝑛 = log𝑁 in Theorem 9.6, we give a 2𝑛 × 2𝑛 matrix 𝑀 with R𝑀(2𝑛1/4−𝜀

) ≥
𝛿 · 4𝑛 for infinitely many 𝑛). By a simple modification of our construction, we prove
an even stronger lower bound:

Theorem 9.8. For all functions 𝛼(𝑛) = 𝜔(1) such that 𝑛𝛼(𝑛) is time-constructible,
there is a function 𝑓 ∈ TIME[2(log𝑛)𝛼(𝑛)

]NP which is not in PHcc.

Of the three previously-known deterministic constructions of rigid matrices men-
tioned near the beginning of this Chapter, only the second constructs rigid enough
matrices to apply Lemma 9.1. However, it only yields a 2𝑛 × 2𝑛 matrix 𝑀 with
R𝑀(2(log𝑛)𝜔(1)

) ≥ Ω(4𝑛) in TIME[exp(exp((log 𝑛)𝜔(1)))]. We obtain exponential time
savings using an NP oracle.

Depth-2 Arithmetic Circuit Lower Bounds Although the rank parameters in
our rigidity lower bounds from Theorem 9.6 are not high enough to give log-depth
arithmetic circuit lower bounds via Valiant’s approach, the rigidity parameters are
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high enough that we can prove lower bounds against constant-depth arithmetic cir-
cuits. We consider a variant on rigidity which is useful for studying depth-2 arithmetic
circuits:

Definition 9.2. For a field F and a matrix 𝐴 ∈ F𝑁×𝑁 , let

𝑤2(𝐴) := min{nnz(𝐵) + nnz(𝐶) | 𝐴 = 𝐵𝐶},

where the min is over all pairs 𝐵,𝐶 of matrices of any dimensions over F whose
product is 𝐴, and nnz(𝑋) denotes the number of nonzero entries in the matrix 𝑋.

It is not hard to see that 𝑤2(𝐴) equals, up to an additive2 𝑛, the minimum size
(number of wires) of a depth-2 linear circuit over F which computes 𝐴, i.e. a depth-2
circuit which takes as input the 𝑁 entries of a vector 𝑥 ∈ F𝑁 and outputs the 𝑁
entries of the vector 𝐴𝑥, and whose gates compute F-linear combinations of their
inputs.

Every matrix 𝑀 ∈ {0, 1}𝑁×𝑁 has 𝑤2(𝑀) ≤ 𝑂(𝑁2/ log𝑁) over any field, and
similar to the situation for rigidity, for any fixed prime power 𝑞 = 𝑝𝑟, a random matrix
𝐴 ∈ F𝑁×𝑁

𝑞 has 𝑤2(𝐴) ≥ Ω(𝑁2/ log𝑁) with high probability [Lup56]. However, the
best known lower bounds on 𝑤2 for explicit families of 𝑁 ×𝑁 matrices are only:
∙ Ω(𝑁 log𝑁) for Boolean Hadamard matrices [AKW90]
∙ Ω(𝑁 log2𝑁/(log log𝑁)2) for asymptotically good error-correcting

codes [GHK+12]
∙ Ω(𝑁 log2𝑁/ log log𝑁) for matrices based on super-concentrator graphs [RTS00]
Connections between rigidity lower bounds and 𝑤2 lower bounds for a number of

different parameter settings are known [Pud94]. We apply our rigidity lower bounds
using a similar connection in the high rigidity setting to show higher 𝑤2 lower bounds
for matrices constructible in PNP:

Theorem 9.9. For all prime powers 𝑞 = 𝑝𝑟 and constants 𝜀 > 0:

∙ There is a PNP machine 𝑀 such that, for infinitely many 𝑁 , on input 1𝑁 , 𝑀
outputs an 𝑁×𝑁 matrix 𝐻𝑁 ∈ {0, 1}𝑁×𝑁 such that 𝑤2(𝐻𝑁) ≥ Ω(𝑁 ·2(log𝑁)1/4−𝜀

)
over F𝑞.

Threshold Circuit Lower Bounds. We next give an application of our construc-
tion to Boolean circuit complexity. Using the probabilistic rank upper bound we gave
for threshold circuits in Theorem 9.3 above, we give a new lower bound:

Theorem 9.10. For every 𝛿 > 0 and prime 𝑝, there is an 𝑎 > 0 such that the
class ENP does not have non-uniform AC0[𝑝] ∘ LTF ∘ AC0[𝑝] ∘ LTF circuits of depth
𝑜(log 𝑛/ log log 𝑛) where the bottom LTF layer has 2𝑂(𝑛𝑎) gates, the rest of the circuit
has polynomial size, and the middle layer LTF gates have fan-in 𝑂(𝑛1/2−𝛿).

2𝑤2(𝐴) equals the minimum size of a depth-2 linear circuit for 𝐴 when wires are not allowed
to go directly from inputs to outputs. We can convert a circuit where wires do go from inputs to
outputs to one where they do not, by adding in 𝑛 middle-level gates which take the values of the 𝑛
inputs. Hence, the minimum size of a depth-2 linear circuit for 𝐴 differs from 𝑤2(𝐴) by a negligible
additive ≤ 𝑛.
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We briefly compare with prior lower bounds for threshold circuits:

∙ We showed above in Corollary 6.1 and Theorem 8.17 that ENP does not have
non-uniform ACC0∘LTF∘LTF circuits where the bottom LTF layer has 𝑛2−𝜀 gates
and the remaining ACC0 ∘ LTF subcircuit has 2𝑛𝑜(1) size. Tamaki [Tam16] also
showed similar results for depth-2 circuits with symmetric and threshold gates.
Our new lower bound is incomparable to these: we allow for many more LTF
gates in the bottom layer, and unbounded depth, but the prior result allowed
for larger size above the bottom layer, as well as ACC0 circuitry rather than just
AC0[𝑝] circuitry.

∙ Kane and Williams [KW16] previously showed there is a function in P which
requires MAJ ∘ LTF ∘ LTF circuits of size Ω(𝑛3/2/ log3 𝑛). Our lower bound is
for much larger circuits than this, but without a MAJ gate on top, and for a
function in ENP instead of P.

9.2 Other Related Work
Toggle Rank. By Yao’s minimax principle [Yao83], BP ·MOD𝑚P communication
complexity (randomized communication with “counting modulo 𝑚” power) equals
worst-case distributional MOD𝑚P communication complexity. In matrix terms,
putting an arbitrary distribution 𝒫 on the pairs {0, 1}𝑛 × {0, 1}𝑛, the worst-case
𝜀-distributional complexity of 𝑀 is the lowest rank (over Z𝑚) of a 2𝑛 × 2𝑛 matrix
𝑁 with error ||𝑀 − 𝑁 || ≤ 𝜀 over 𝒫 . Wunderlich [Wun12] calls this rank notion the
approximate toggle rank. Proposition 9.1 shows that probabilistic rank and approx-
imate toggle rank are very closely related, but they are not the same as the usual
rigidity concept, which corresponds to the uniform distribution on pairs. For struc-
tured functions like IP2, we prove (in Theorem 9.5) that the uniform distribution is
the worst case.

Sign-rank Rigidity and AC0-MOD2 circuits. A tantalizing open problem that
has gained popularity in recent years [SV12, ABG+14, CGJ+16] is whether IP2 has
polynomial-size AC0∘MOD2 circuits: i.e., circuits of 𝑂(1)-depth over AND/OR/NOT,
but with a layer of gates computing PARITY at the bottom nearest the inputs.
Servedio and Viola [SV12] propose an interesting attack: in our terminology, they
note that AC0 ∘ MOD2 circuits of size 𝑠 have 𝑛𝑂(log𝑑−1 𝑠) log(1/𝜀) sign-rank rigidity at
most 𝜀22𝑛 over R, and prove a lower bound on the correlation of signs of sparse
polynomials (taken as a proxy for low-rank sign-matrices) with IP2. That is, they
prove a weak sign-rank rigidity lower bound (note Razborov and Sherstov prove an
analogous lower bound for sign-rank rigidity of IP2; see Theorem 10.13). Our results
have two consequences for this sort of approach. First, Theorem 10.12 shows that a
sign-rank rigidity lower bound would prove something much stronger: a lower bound
for depth-two threshold circuits computing IP2, a longstanding open problem. Second,
our non-trivial upper bounds on the rank rigidity of the IP2 matrix (which is 𝐻𝑛)
suggest that IP2 may have much lower sign-rank rigidity than expected.
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Sign-Rank Rigidity and Margin Complexity. Linial and Shraibman [LS09]
prove (in our terminology) that the sign-rank rigidity of an 𝑛×𝑛 matrix 𝐴 is at most
𝜀𝑛2 for target rank 𝑂(𝑚𝑐(𝐴)2 log(1/𝜀)), where 𝑚𝑐(𝐴) is the “margin complexity”
of 𝐴. Thus the margin complexity of a matrix can be used to upper bound sign-
rank rigidity. They also study rigidity notion based on 𝑚𝑐, conjecture that high
𝑚𝑐 implies high margin-complexity rigidity, and show that high margin-complexity
also implies communication complexity lower bounds (for similar parameters as the
standard rank-rigidity setting).

Approximate Rank. A different “approximating” rank notion has been studied
in [BdW01, KS10, ALSV13], with connections to quantum computing and approx-
imation algorithms. The 𝜀-approximate rank of 𝑀 ∈ R𝑛×𝑛 is the lowest rank of a
matrix 𝐴 such that ||𝑀−𝐴||∞ ≤ 𝜀. That is, we can obtain one matrix from the other
by perturbing each entry by at most 𝜀 > 0. The appropriate analogy here seems to
be that probabilistic polynomials are to probabilistic rank, as ℓ∞-approximate poly-
nomials are to approximate rank: both are natural generalizations of polynomial
representations to matrix representations, with different properties.

Non-rigidity of conjectured-to-be-rigid matrices. Are there other
conjectured-to-be-rigid matrices which are not? One candidate would be the
generating matrix of a good linear code over F2. Recently, Goldreich [Dvi16]
reported a distribution of matrices in which most of them are the generating matrix
of a good linear code that is not rigid, found by Dvir. It would be very interesting
to find an explicit code with this property. Since a preliminary version of our
proof of the non-rigidity of the Walsh-Hadamard transform appeared [AW17], other
researchers have extended our results to even more families of matrices: Dvir and
Edelman [DE17] showed the non-rigidity of matrices arising from functions of inner
products over finite fields, and Dvir and Liu [DL19] showed the non-rigidity of
Fourier and circulant matrices.

Explicit Construction Based on Complexity-Theoretical Ideas. In a recent
breakthrough work, Oliveira and Santhanam [OS17] gave an infinite often pseudode-
terministic construction of primes in sub-exponential time. (That is, given an input
1𝑁 , the (randomized) algorithm outputs a fixed prime 𝑃𝑁 of 𝑁 bits with high proba-
bility, for infinite number of 𝑁 ’s, and it runs in sub-exponential time). Their results
are similar to our construction of rigid matrices in Theorem 9.6 in that they construct
algebraic objects by building on complexity-theoretic ideas.

Our approach differs from theirs in several ways. First, [OS17] make crucial
use of the fact that primes can be recognized in polynomial-time [AKS04], while
in contrast, testing whether a matrix is rigid is coNP-complete (cf, Proposition 29
of [Des07]). Second, their results build on hardness vs randomness, and a crucial
component of their arguments is to use special pseudo-random generators to hit the
set of all 𝑁 -bit primes, while our results build on Williams’ algorithmic approach to
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lower bounds [Wil13, Wil14c]: we show one can contradict the non-deterministic time
hierarchy theorem, assuming there is no PNP construction of rigid matrices.

Conditional Explicit Construction of Rigid Matrices. There are several
works achieving deterministic polynomial-time construction of rigid matrices under
strong complexity assumptions. They are all based on the hardness-vs-randomness
paradigm [NW94]. The observation is that since checking rigidity is in coNP, the
ability to fool a non-deterministic algorithm implies the ability to construct rigid
matrices.

In [KvM02], it is shown that under the assumption that E has no 2𝑜(𝑛)-size SAT-
oracle circuits, there is a P-time construction of matrices 𝑀𝑁 over Z𝑝(𝑁) such that
R(𝑀𝑁)(𝑟) ≥ Ω((𝑛− 𝑟)2/ log 𝑛), where 𝑝(𝑁) is a prime bounded by a polynomial of
𝑁 . [MV05] give the same construction under the weaker assumption that E has no
2𝑜(𝑛)-size non-deterministic circuits3. In [GST03], the same construction is achieved
with a uniform assumption that E has no 2𝑜(𝑛)-time Arther-Merlin protocols.

Lower Bounds on 𝑤2. Recall the variant on rigidity, 𝑤2, from Definition 9.2 above.
Recently, Kumar and Volk [KV19] gave a construction of matrices with high 𝑤2, which
is incomparable with our Theorem 9.9. Among other results, they show that there
are constants 𝑎, 𝑏, 𝑐 > 0 and a family {𝐴𝑁}𝑁∈N such that 𝐴𝑁 is an 𝑁×𝑁 matrix over
an extension of F2 of degree exp(𝑁1−𝑎) which can be computed in time exp(𝑁1−𝑏)
and with 𝑤2(𝐴𝑁) > 𝑁1+𝑐. By comparison, our Theorem 9.9 constructs 𝑁 × 𝑁

matrices 𝐻𝑁 in PNP with the worse lower bound 𝑤2(𝐻𝑁) ≥ Ω(𝑁 · 2(log𝑁)1/4−𝜀
), but

our matrices are over F2 instead of a large extension field of F2. Their techniques
seem very different from ours, although they also use a padding trick, similar to our
Lemma 11.5, of taking the Kronecker product of a rigid matrix with a large simple
matrix to decrease its computational complexity in terms of the matrix size.

Circuit Lower Bounds via PCPP. In recent work, Chen and Williams [CW19b]
applied PCPPs to show that, in order to prove C lower bounds for various non-
deterministic time classes such as NEXP or NQP, it suffices to solve CAPP on ⊕2 ∘
C circuits (an XOR of two C circuits) in better-than-2𝑛 time. The proof crucially
combines the assumed CAPP algorithm and PCPPs to obtain a non-trivial CAPP
algorithm for general circuits. Here, our proof for Theorem 9.7 makes similar, but
more sophisticated use of PCPPs. In particular, we actually require the PCPP to be
smooth, which is not required in [CW19b]. Our proof for Theorem 9.6 also relies
on a completely different bootstrapping argument, which is specific for our task of
constructing rigid matrices.

Rigidity and Data Structure Lower Bounds. Recent work by Dvir, Golovnev,
and Weinstein [DGW19] showed connections between rigidity and static data struc-
ture lower bounds. In particular, they posed the challenge of constructing rigid ma-

3Indeed, the requirement is E has no 2𝑜(𝑛)-size SV-nondeterministic circuits, which is the non-
uniform analogue of NP ∩ coNP; see [MV05] for details.
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trices in PNP or ENP as an avenue toward proving new data structure lower bounds.
Unfortunately, the parameters of our new PNP construction do not seem to yield any
new data structure bounds using their approach.

9.3 Bibliographic Details
This Part of the dissertation is based off of the results in two previously published
papers:

∙ ‘Probabilistic Rank and Matrix Rigidity’ with Ryan Williams [AW17], which
appeared in STOC 2017, and

∙ ‘Efficient Construction of Rigid Matrices Using an NP Oracle’ with Lijie
Chen [AC19], which will appear in FOCS 2019.

Chapter 10 presents results from [AW17], and Chapter 11 presents results
from [AC19].
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Chapter 10

Probabilistic Rank and Matrix
Rigidity

10.1 Polynomials, Rank, and Rigidity

In this Chapter, we study the interplay between the notions of probabilistic rank and
matrix rigidity. We begin in this Section with their basic properties.

Definition 10.1. For any 𝜀 ∈ [0, 1], and any commutative ring 𝑅, a probabilistic
matrix with error 𝜀 and rank 𝑟 for the matrix 𝐴 ∈ 𝑅𝑁×𝑁 is a distribution ℳ on
matrices 𝐵 ∈ 𝑅𝑁×𝑁 of rank at most 𝑟 over 𝑅 such that, for every 𝑖, 𝑗 ∈ [𝑁 ], we have

Pr
𝐵∼ℳ

[𝐴(𝑖, 𝑗) = 𝐵(𝑖, 𝑗)] ≥ 1− 𝜀.

The 𝜀-probabilistic rank of 𝐴 over 𝑅 is the minimum rank of a probabilistic matrix
with error 𝜀 for 𝑀 .

Definition 10.2. For any commutative ring 𝑅, matrix 𝐴 ∈ 𝑅𝑁×𝑁 , and 𝑟 ∈ N, the
rank-𝑟 rigidity of 𝐴, denoted by ℛ𝐴(𝑟), is the minimum Hamming distance from 𝐴
to an 𝑁 ×𝑁 matrix of rank 𝑟 over 𝑅. That is, ℛ𝐴(𝑟) is the number of entries of 𝐴
that must be modified in order for the rank to drop to 𝑟. (The ring 𝑅 should be clear
from context.)

By drawing a ‘typical’ matrix from the probabilistic rank distribution, we can
always obtain a matrix rigidity upper bound:

Proposition 10.1. For any commutative ring 𝑅, matrix 𝑀 ∈ 𝑅𝑁×𝑁 , and 𝜀 ∈ [0, 1],
if the 𝜀-probabilistic rank of 𝑅 is 𝑟, then ℛ𝐴(𝑟) ≤ 𝜀 ·𝑁2.

We now describe a basic connection between probabilistic rank, matrix rigidity,
and probabilistic polynomials (recall the definition from Definition 7.3 in Section 7.3
above). We show that probabilistic polynomials for a Boolean function 𝑓 can be used
to give upper bounds on the probabilistic rank of the truth table matrix of 𝑓 :
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Definition 10.3. Let 𝑅 be any commutative ring, and 𝑓 : {0, 1}2𝑛 → 𝑅 be any
function on 2𝑛 Boolean variables. The truth table matrix 𝑀𝑓 of 𝑓 is the 2𝑛 × 2𝑛

matrix given by
𝑀𝑓 (𝑣𝑖, 𝑣𝑗) = 𝑓(𝑣𝑖, 𝑣𝑗),

where 𝑣1, . . . , 𝑣2𝑛 ∈ {0, 1}𝑛 is the enumeration of all 𝑛-bit vectors in lexicographical
order.

Given the above definition, it is natural to define the probabilistic rank of a func-
tion:

Definition 10.4. The 𝜀-probabilistic rank of a function 𝑓 : {0, 1}2𝑛 → 𝑅 is the 𝜀-
probabilistic rank of its truth table matrix 𝑀𝑓 . The rank of 𝑓 and the rigidity of 𝑓
are defined similarly.

We will make use of the following simple mapping from sparse polynomials to
low-rank matrices; this is the same connection we used in Section 8.1 above to design
algorithms using probabilistic polynomials.

Lemma 10.1. Let 𝑅 be any commutative ring, and 𝑓 : {0, 1}2𝑛 → 𝑅. Let 𝑝 : 𝑅2𝑛 →
𝑅 be a polynomial with 𝑚 monomials such that 𝑝(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) for any 𝑥, 𝑦 ∈ {0, 1}𝑛.
Then the rank of 𝑓 is at most 𝑚.

Proof. Let 𝑎1, . . . , 𝑎𝑚, 𝑏1, . . . , 𝑏𝑚 : 𝑅𝑛 → 𝑅 be monomials such that 𝑝(𝑥, 𝑦) =∑︀𝑚
𝑖=1 𝑎𝑖(𝑥) · 𝑏𝑖(𝑦) is the monomial expansion of 𝑝. For 1 ≤ 𝑖 ≤ 𝑚, define vec-

tors �⃗�𝑖, 𝛽𝑖 ∈ 𝑅2𝑛 by �⃗�𝑖(𝑥) = 𝑎𝑖(𝑥) and 𝛽𝑖(𝑦) = 𝑏𝑖(𝑦) for each 𝑥, 𝑦 ∈ {0, 1}𝑛.
Then 𝑀𝑓 =

∑︀𝑚
𝑖=1 �⃗�𝑖 ⊗ 𝛽𝑖, where ⊗ denotes the outer product of vectors. Thus

rank(𝑀𝑓 ) ≤ 𝑚.

As a corollary, the probabilistic rank of 𝑓 is at most the sparsity of a probabilistic
polynomial for 𝑓 :

Corollary 10.1. Let 𝑅 be any commutative ring, and 𝑓 : {0, 1}2𝑛 → 𝑅. If 𝑓 has
a probabilistic polynomial 𝒫 with at most 𝑚 monomials and error 𝜀, then the 𝜀-
probabilistic rank of 𝑓 is at most 𝑚.

Proof. Let 𝑝 be a polynomial in the support of the distribution 𝒫 . Since 𝑝 has at
most 𝑚 monomials, by Lemma 10.1 the truth table matrix 𝑀𝑝 of 𝑝 (restricted to the
domain {0, 1}2𝑛) has rank at most 𝑚. The distribution of 𝑀𝑝 over 𝑝 drawn from 𝒫
is therefore an 𝜀-probabilistic rank-𝑚 distribution for 𝑀𝑓 , since 𝑀𝑓 (𝑥, 𝑦) = 𝑀𝑝(𝑥, 𝑦)
if and only if 𝑓(𝑥, 𝑦) = 𝑝(𝑥, 𝑦).

It follows that we can obtain a matrix rigidity upper bound from a sparse proba-
bilistic polynomial.

Corollary 10.2. Let 𝑅 be any commutative ring, and 𝑓 : {0, 1}2𝑛 → 𝑅 be any
function on 2𝑛 Boolean variables. If 𝑓 has a probabilistic polynomial 𝑃 with at most
𝑚 monomials and error 𝜀, then one can modify 𝜀22𝑛 entries of the truth table matrix
𝑀𝑓 and obtain a matrix of rank at most 𝑚.
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10.2 Non-Rigidity of Walsh-Hadamard

In this Section, we present our new rigidity upper bounds for the Walsh-Hadamard
Transform.

Definition 10.5. Let 𝑣1, . . . , 𝑣2𝑛 ∈ {0, 1}𝑛 be the enumeration of all 𝑛-bit vectors in
lexicographical order. The Walsh-Hadamard matrix 𝐻𝑛 is the 2𝑛 × 2𝑛 matrix defined
by 𝐻𝑛(𝑣𝑖, 𝑣𝑗) := (−1)⟨𝑣𝑖,𝑣𝑗⟩.

10.2.1 Rigidity Upper Bound for Low Error

We first prove that the Walsh-Hadamard matrices are not rigid enough for Valiant’s
program:

Theorem 10.1. For every field 𝐾, for every sufficiently small 𝜀 > 0, and for all 𝑛, we
have ℛ𝐻𝑛

(︀
2𝑛−𝑓(𝜀)𝑛

)︀
≤ 2𝑛(1+𝜀) over 𝐾, for a function 𝑓 where 𝑓(𝜀) = Θ(𝜀2/ log(1/𝜀)).

We recall some notation from the Preliminaries. For a vector 𝑣 ∈ {0, 1}𝑛, let |𝑣|
be the number of ones in 𝑣. Let 𝐻 : [0, 1]→ [0, 1] denote the binary entropy function

𝐻(𝑝) = −𝑝 log2 𝑝− (1− 𝑝) log2(1− 𝑝).

We also gave the following estimates on binomial coefficients (in Proposition 2.3 and
Corollary 2.1). For 𝜀 ∈ (0, 1/2):(︂

𝑛

𝜀𝑛

)︂
≤ 𝑛 · 2𝐻(𝜀)𝑛, and (10.1)

2𝑛−𝑂(𝜀2𝑛) ≤
(︂

𝑛

(1/2− 𝜀)𝑛

)︂
≤ 2𝑛−Ω(𝜀2𝑛). (10.2)

Our first (simple) lemma uses a polynomial to compute a large fraction of 𝐻𝑛’s entries
with a low-rank matrix. However, this fraction won’t be high enough; we’ll need
another idea to “correct” many entries later.

Lemma 10.2. For every commutative ring 𝑅, and for every 𝜀 ∈ (0, 1/2), there
is a multilinear polynomial 𝑝(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) over 𝑅 with at most 2𝑛−Ω(𝜀2𝑛)

monomials, such that for all �⃗�, �⃗� ∈ {0, 1}𝑛 with ⟨�⃗�, �⃗�⟩ ∈ [2𝜀𝑛, (1/2 + 𝜀)𝑛],

𝑝(�⃗�, �⃗�) = (−1)⟨�⃗�,�⃗�⟩.

The proof uses properties of multivariate polynomial interpolation over the inte-
gers. To be concrete, we will apply the following Lemma from Chapter 7:
Reminder of Lemma 7.1 For any integers 𝑛, 𝑟, 𝑘 with 𝑛 ≥ 𝑟+ 𝑘 and any integers
𝑐1, . . . , 𝑐𝑟, there is a multivariate polynomial 𝑝 : {0, 1}𝑛 → Z of degree 𝑟 − 1 with
integer coefficients such that 𝑝(𝑧) = 𝑐𝑖 for all �⃗� ∈ {0, 1}𝑛 with Hamming weight
|�⃗�| = 𝑘 + 𝑖.
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Proof of Lemma 10.2. By Lemma 7.1 with 𝑘 = 2𝜀𝑛 − 1, 𝑟 = (1/2 − 𝜀)𝑛 + 1, and
𝑐𝑖 = (−1)𝑘+𝑖, one can construct a multivariate polynomial 𝑞 : {0, 1}𝑛 → Z with
integer coefficients, of degree (1/2 − 𝜀)𝑛, such that for all �⃗� ∈ {0, 1}𝑛 with |�⃗�| ∈
[2𝜀𝑛, (1/2+𝜀)𝑛], we have 𝑞(�⃗�) = (−1)|�⃗�|. As discussed in Section 2.1, 𝑞 can be viewed
as a polynomial over 𝑅. Then our desired polynomial is

𝑝(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) = 𝑞 (𝑥1𝑦1, 𝑥2𝑦2, . . . , 𝑥𝑛𝑦𝑛) .

We can upper-bound the number of monomials in 𝑝 as follows. First, since we only
care about the value of 𝑝 on {0, 1}2𝑛, we can make 𝑝 multilinear by applying the
equation 𝑣2 = 𝑣 to all variables. Second, observe that for all 𝑖 = 1, . . . , 𝑛, 𝑥𝑖 and 𝑦𝑖
appear in exactly the same monomials. So if we introduce a variable 𝑧𝑖 in place of
each 𝑥𝑖 · 𝑦𝑖 in 𝑝, the number of monomials in our new 𝑛-variate polynomial 𝑝′ equals
the number of monomials in 𝑝.

Since 𝑝′ is multilinear and degree (1/2− 𝜀)𝑛 + 1, the number of monomials is at
most 𝑛

(︀
𝑛

(1/2−𝜀)𝑛+1

)︀
, which by (10.2) is at most 2𝑛−𝑐2𝜀2𝑛 for some constant 𝑐2 > 0.

Our second lemma says: fixing a vector 𝑥 with about 1/2 ones, there is a strong
upper bound the number of vectors which has about 1/2 ones but has small (integer)
inner product with 𝑥; we’ll use this to upper bound the number of erroneous entries
at the very end.

Lemma 10.3. For every vector 𝑥 ∈ {0, 1}𝑛 with |𝑥| ∈ [(1/2 − 𝑎)𝑛, (1/2 + 𝑎)𝑛], and
any parameters 𝑎, 𝑏 ∈ (0, 1/5), the probability that a uniformly random vector 𝑦 from
{0, 1}𝑛 satisfies both

∙ |𝑦| ∈ [(1/2− 𝑎)𝑛, (1/2 + 𝑎)𝑛], and

∙
∑︀𝑛

𝑘=1 𝑥𝑘𝑦𝑘 ≤ 𝑏𝑛

is at most (2𝑎𝑛+ 1)(𝑏𝑛+ 1) · 2(𝑓(𝑎,𝑏)−1)𝑛, where 𝑓 is a function such that 𝑓(𝑎, 𝑏)→ 0
as 𝑎, 𝑏→ 0.

The usual toolbox of small-deviation estimates does not seem to yield the lemma;
we give a direct proof.

Proof. For all 𝑥 of the above form, every 𝑘 ∈ [(1/2 − 𝑎)𝑛, (1/2 + 𝑎)𝑛], and every
𝑠 ≤ 𝑏𝑛, we count the number of 𝑦 ∈ {0, 1}𝑛 with |𝑦| = 𝑘 and

∑︀𝑛
𝑘=1 𝑥𝑘𝑦𝑘 = 𝑠. A

vector 𝑦 satisfies these properties if and only if:

∙ there are exactly 𝑠 integers 𝑖 with 𝑦[𝑖] = 1 and 𝑥[𝑖] = 1, and

∙ there are exactly 𝑘 − 𝑠 integers 𝑖 with 𝑦[𝑖] = 1 and 𝑥[𝑖] = 0.
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So there are
(︀|𝑥|

𝑠

)︀(︀
𝑛−|𝑥|
𝑘−𝑠

)︀
such choices of 𝑦. The total probability is hence

1

2𝑛

(1/2+𝑎)𝑛∑︁
𝑘=(1/2−𝑎)𝑛

𝑏𝑛∑︁
𝑠=0

(︂
|𝑥|
𝑠

)︂(︂
𝑛− |𝑥|
𝑘 − 𝑠

)︂

=
1

2𝑛

(1/2+𝑎)𝑛∑︁
𝑘=(1/2−𝑎)𝑛

𝑏𝑛∑︁
𝑠=0

(︂
|𝑥|
𝑠

)︂(︂
𝑛− |𝑥|
𝑘 − 𝑠

)︂

≤ 1

2𝑛

(1/2+𝑎)𝑛∑︁
𝑘=(1/2−𝑎)𝑛

𝑏𝑛∑︁
𝑠=0

(︂
(1/2 + 𝑎)𝑛

𝑠

)︂(︂
(1/2 + 𝑎)𝑛

𝑘 − 𝑠

)︂

≤ 1

2𝑛

(1/2+𝑎)𝑛∑︁
𝑘=(1/2−𝑎)𝑛

(𝑏𝑛+ 1) ·
(︂

(1/2 + 𝑎)𝑛

𝑏𝑛

)︂(︂
(1/2 + 𝑎)𝑛

(1/2− 𝑎− 𝑏)𝑛

)︂
. (*)

Recall that if 𝑘1 < 𝑘2 < 𝑛/2 then
(︀
𝑛
𝑘1

)︀
<
(︀
𝑛
𝑘2

)︀
, and if 𝑘3 > 𝑘4 > 𝑛/2, then(︀

𝑛
𝑘3

)︀
<
(︀
𝑛
𝑘4

)︀
. Step (*) therefore follows since 𝑠 ≤ 𝑏𝑛 < 1

2
(1/2 + 𝑎)𝑛 and 𝑘 − 𝑠 ≥

(1/2−𝑎− 𝑏)𝑛 > 1
2
(1/2+𝑎)𝑛 whenever 0 < 𝑎, 𝑏 < 1/5. Let 𝑔(𝑛) = (2𝑎𝑛+1) · (𝑏𝑛+1).

Simplifying further, the above expression is at most

𝑔(𝑛)

2𝑛

(︂
(1/2 + 𝑎)𝑛

𝑏𝑛

)︂(︂
(1/2 + 𝑎)𝑛

(2𝑎+ 𝑏)𝑛

)︂
≤ 𝑔(𝑛)

2𝑛
· 2(1/2+𝑎)𝑛·𝐻(𝑏/(1/2+𝑎))2(1/2+𝑎)𝑛·𝐻((2𝑎+𝑏)/(1/2+𝑎)) (by (10.1))

≤ 𝑔(𝑛)

2𝑛
· 2(1/2+𝑎)𝑛·𝐻(2𝑏)2(1/2+𝑎)𝑛·𝐻(4𝑎+2𝑏)

≤ 𝑔(𝑛)

4𝑛
· 2(1/2+𝑎)𝑛·2·2𝑏·log(1/2𝑏)2(1/2+𝑎)𝑛·2·(4𝑎+2𝑏)·log(1/(4𝑎+2𝑏))

(𝐻(𝜀) ≤ 2𝜀 log2(1/𝜀) for 𝜀 < 1/2)

≤ 𝑔(𝑛)

2𝑛
· 2𝑓(𝑎,𝑏)𝑛,

where 𝑓(𝑎, 𝑏) = (1/2 + 𝑎)(4𝑏 log(1/2𝑏) + (8𝑎+ 4𝑏) log(1/(4𝑎+ 2𝑏))).

Our third lemma is a simple linear-algebraic observation: given a low-rank matrix
𝑀 that computes another matrix 𝑁 on all but a small number of rows and columns,
𝑁 must also have relatively low rank.

Lemma 10.4. Let 𝑀 ′ be a matrix of rank 𝑟 which is equal to 𝑀 except in at most 𝑘
columns and ℓ rows. Then the rank of 𝑀 is at most 𝑟 + 𝑘 + ℓ.

Proof. We will start with 𝑀 ′, and add at most 𝑘+ ℓ rank-one matrices to 𝑀 ′ so that
it equals 𝑀 .

Consider a column 𝑐 on which𝑀 does not equal𝑀 ′. We can add to𝑀 ′ a correction
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matrix 𝐶𝑐 given by

𝐶𝑐(𝑖, 𝑗) =

{︃
𝑀(𝑖, 𝑣)−𝑀 ′(𝑖, 𝑣) if 𝑗 = 𝑣,

0 otherwise.

Then, 𝑀 ′ +𝐶𝑐 equals 𝑀 on column 𝑐, and is unchanged in any other column. More-
over, since 𝐶𝑐 is only nonzero on a single column, it has rank one. So all we have to
do is add the correction matrix 𝐶𝑐 for each column 𝑐 on which 𝑀 and 𝑀 ′ differ. The
rows of 𝑀 ′ can be corrected analogously.

Corollary 10.3. Let 𝑇 be any 2𝑛 × 2𝑛 matrix. Let 𝑎 ∈ (0, 1/2), and let 𝑀 be a
2𝑛 × 2𝑛 matrix of rank 𝑟, indexed by 𝑛-bit vectors. There is a 2𝑛 × 2𝑛 matrix 𝑀 ′ of
rank at most 𝑟+ 4 · 𝑛 · 2𝑛−Ω(𝑎2𝑛) such that 𝑀 ′(𝑣𝑖, 𝑣𝑗) = 𝑇 (𝑣𝑖, 𝑣𝑗) on all 𝑣𝑖, 𝑣𝑗 ∈ {0, 1}𝑛
where at least one of the following holds:

∙ |𝑣𝑖| /∈ [(1/2− 𝑎)𝑛, (1/2 + 𝑎)𝑛],

∙ |𝑣𝑗| /∈ [(1/2− 𝑎)𝑛, (1/2 + 𝑎)𝑛], or,

∙ 𝑀(𝑣𝑖, 𝑣𝑗) = 𝑇 (𝑣𝑖, 𝑣𝑗).

Proof. The number of 𝑣𝑖 ∈ {0, 1}𝑛 with |𝑣𝑖| /∈ [(1/2− 𝑎)𝑛, (1/2 + 𝑎)𝑛] is at most

(1/2−𝑎)𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
+

𝑛∑︁
𝑖=(1/2+𝑎)𝑛

(︂
𝑛

𝑖

)︂
= 2

(1/2−𝑎)𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
≤ 𝑛 · 2𝑛−Ω(𝑎2𝑛),

by (10.2). Applying Lemma 10.4 to 𝑀 and 𝑀 ′ with 𝑘 and ℓ set to 2 · 𝑛 · 2𝑛−Ω(𝑎2𝑛),
the result follows.

Let us outline how we’ll use all of the above. First, we construct a matrix 𝑀 of
rank about 2𝑛−Ω(𝜀2𝑛) approximating 𝐻𝑛, using the polynomial from Lemma 10.2 in
a straightforward way. This matrix 𝑀 has far more erroneous entries than what we
desire. But by Lemma 10.3, we can infer that the errors in 𝑀 are highly concentrated
on a relatively small number of rows and columns. Applying Corollary 10.3, the
rows and columns can be “corrected” in a way that increases the rank of 𝑀 by only
2𝑛−Ω(𝜀2𝑛). By Lemma 10.3, each row of the matrix left over will have 2𝑂(𝜀 log(1/𝜀)𝑛)

erroneous entries.

Proof of Theorem 10.1. In fact, we prove that one only has to modify 2𝑂(𝜀 log(1/𝜀)𝑛)

entries in each row of 𝐻𝑛, to obtain the desired rank.
Let 𝜀 > 0 be given. By Lemma 10.2, there is a polynomial 𝑝(𝑥, 𝑦) in 2𝑛 variables

with 𝑚 = 2𝑛−Ω(𝜀2𝑛) monomials which computes (−1)⟨𝑥,𝑦⟩ correctly, on all (𝑥, 𝑦) ∈
{0, 1}2𝑛 such that ⟨𝑥, 𝑦⟩ ∈ [2𝜀𝑛, (1/2 + 𝜀)𝑛].

Construct a 2𝑛 × 2𝑛 matrix 𝑀 of rank 𝑚 as in Corollary 10.1, so that 𝑀(𝑥, 𝑦) =
𝑝(𝑥, 𝑦). By definition, 𝑀 equals 𝐻𝑛 on all (𝑥, 𝑦) ∈ {0, 1}2𝑛 satisfying ⟨𝑥, 𝑦⟩ ∈
[2𝜀𝑛, (1/2 + 𝜀)𝑛].
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Applying Corollary 10.3 to 𝑀 with 𝑇 = 𝐻𝑛 and 𝑎 = 𝜀, we obtain a matrix
𝑀 ′ of rank 𝑚 + 4 · 𝑛 · 2𝑛−Ω(𝜀2𝑛) which is correct on all (𝑥, 𝑦) where either |𝑥| /∈
[(1/2− 𝜀)𝑛, (1/2 + 𝜀)𝑛], |𝑡| /∈ [(1/2− 𝜀)𝑛, (1/2 + 𝜀)𝑛], or ⟨𝑥, 𝑦⟩ ∈ [2𝜀𝑛, (1/2 + 𝜀)𝑛].

Fix a row of 𝐻𝑛 indexed by 𝑥 ∈ {0, 1}𝑛 with |𝑥| ∈ [(1/2−𝜀)𝑛, (1/2+𝜀)𝑛] (note the
other rows are already correct). To show that 𝑀 ′ differs from 𝐻𝑛 on a small number
of entries, we need to bound the number of 𝑦 such that none of the above conditions
hold, i.e.,

1. |𝑦| ∈ [(1/2− 𝜀)𝑛, (1/2 + 𝜀)𝑛] and

2. ⟨𝑥, 𝑦⟩ /∈ [2𝜀𝑛, (1/2 + 𝜀)𝑛].

Note for our given 𝑥, it is never true that ⟨𝑥, 𝑦⟩ > (1/2 + 𝜀)𝑛. Therefore we only
need to bound the number 𝑁 of 𝑦 such that |𝑦| ∈ [(1/2 − 𝑎)𝑛, (1/2 + 𝑎)𝑛] and yet
⟨𝑥, 𝑦⟩ < 2𝜀𝑛. By Lemma 10.3 with 𝑎 = 𝜀 and 𝑏 = 𝜀, the probability that a random 𝑦
satisfies ⟨𝑥, 𝑦⟩ < 2𝜀𝑛 and |𝑦| ∈ [(1/2− 𝜀)𝑛, (1/2 + 𝜀)𝑛], is at most 𝑂(𝑛2) · 2(𝑓(𝜀,𝜀)−1)𝑛,
where 𝑓 → 0 as 𝜀→ 0. Therefore 𝑁 ≤ 2𝑛 ·𝑂(𝑛2) · 2(𝑓(𝜀,𝜀)−1)𝑛 ≤ 𝑂(𝑛2) · 2𝑓(𝜀,𝜀)𝑛.

Now for sufficiently large 𝑛 and 𝜀 ∈ (0, 1/2), 𝑀 ′ has rank at most 𝑚 + 4 · 𝑛 ·
2𝑛−Ω(𝜀2𝑛) ≤ 5𝑛 · 2𝑛−Ω(𝜀2𝑛). Furthermore, on every row, 𝑀 ′ differs from 𝐻𝑛 in at most
𝑛2 · 2𝑓(𝜀,𝜀) ≤ 2𝑂(𝜀 log(1/𝜀)𝑛) entries.

10.2.2 Rigidity Upper Bound for High Error

In this section, we prove upper bounds on the rigidity of the Walsh-Hadamard trans-
form in the regime where the error is constant, or much larger than 1/2𝑛; this setting
is of interest for communication complexity lower bounds.

Theorem 10.2. For every integer 𝑟 ∈ [22𝑛], over any commutative ring 𝑅, one
can modify at most 22𝑛/𝑟 entries of 𝐻𝑛 and obtain a matrix of rank at most
(𝑛/ log(𝑟))𝑂(

√
𝑛 log(𝑟)).

The proof follows from applying our optimal-degree probabilistic polynomial for
symmetric functions from Chapter 7:
Reminder of Theorem 7.3 There is a probabilistic polynomial over any commuta-
tive ring for any symmetric Boolean function on 𝑛 variables, with error 𝜀 and degree
𝑂(
√︀
𝑛 log(1/𝜀)).

Proof of Theorem 10.2. Set 𝜀 = 1/𝑟, and define the Boolean function 𝐼𝑃2 :
{0, 1}2𝑛 → {−1, 1} by 𝐼𝑃2(𝑥, 𝑦) = (−1)⟨𝑥,𝑦⟩ for all 𝑥, 𝑦 ∈ {0, 1}𝑛. We can see that 𝐻𝑛

is the truth table matrix 𝑀𝐼𝑃2. By Corollary 10.2, it is sufficient to construct a proba-
bilistic polynomial for 𝐼𝑃2 with error 𝜀 and (𝑛/ ln(1/𝜀))𝑂(

√
𝑛 log(1/𝜀)) monomials. Con-

sider the Boolean function 𝑃𝐴𝑅𝐼𝑇𝑌 (𝑧1, . . . , 𝑧𝑛) = (−1)𝑧1+···+𝑧𝑛 for all 𝑧 ∈ {0, 1}𝑛,
and note that 𝐼𝑃2(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) = 𝑃𝐴𝑅𝐼𝑇𝑌 (𝑥1𝑦1, 𝑥2𝑦2, . . . , 𝑥𝑛𝑦𝑛). Since
𝑃𝐴𝑅𝐼𝑇𝑌 is symmetric, by Theorem 7.3 it has a probabilistic polynomial 𝑃 of error
𝜀 and degree 𝑑 = 𝑂(

√︀
𝑛 log(1/𝜀)). Hence, the distribution of 𝑝(𝑥1𝑦1, . . . , 𝑥𝑛𝑦𝑛) over

𝑝 drawn from 𝑃 is a probabilistic polynomial for 𝐼𝑃2. Since we are only interested
in the value of 𝑝(𝑧) when 𝑧 ∈ {0, 1}𝑛, we can make 𝑝 multilinear by applying the
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equation 𝑣2 = 𝑣 to all variables. Then the number of monomials of 𝑝 is at most∑︀𝑂(
√

𝑛 log(1/𝜀))

𝑖=0

(︀
𝑛
𝑖

)︀
≤ (𝑛/ ln(1/𝜀))𝑂(

√
𝑛 log(1/𝜀)). Since in 𝑝(𝑥1𝑦1, . . . , 𝑥𝑛𝑦𝑛) we are sub-

stituting in a monomial for each variable, its expansion has the same number of
monomials as 𝑝, as desired. �

10.2.3 Generalization To SYM-AND circuits

Here we generalize Theorems 10.1 and 10.2 to SYM ∘ AND circuits. In the proof of
Theorem 10.1, the key property of the 𝐼𝑃2 function required is that has the form

𝐼𝑃2(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) = 𝑓(𝑥1 ∧ 𝑦1, . . . , 𝑥𝑛 ∧ 𝑦𝑛),

where 𝑓 is a symmetric Boolean function (in our case, 𝑓 computes parity). The same
proof yields the following generalization:

Theorem 10.3. For every symmetric function 𝑓 : {0, 1}𝑛 → 𝑅, define the function
𝐼𝑃𝑓 : {0, 1}2𝑛 → 𝑅 by 𝐼𝑃𝑓 (𝑥, 𝑦) = 𝑓(𝑥1 ∧ 𝑦1, . . . , 𝑥𝑛 ∧ 𝑦𝑛). For all sufficiently small
𝜀, there is a 𝛿 < 1 and a matrix of rank 2𝛿𝑛 which differs from the truth table matrix
𝑀𝐼𝑃𝑓

in at most 2(1+𝜀)𝑛 entries.

The proof of Theorem 10.2 only requires a probabilistic polynomial construction
in Corollary 10.2. Our probabilistic matrix distribution simply substitutes monomials
into the probabilistic polynomial of Theorem 7.3 for any symmetric function. Since
each monomial can be viewed as an AND, the same argument will work for any
SYM ∘ AND circuit.

Theorem 10.4. For any Boolean function 𝑓 : {0, 1}2𝑛 → 𝑅 which can be written
as a SYM ∘ AND circuit with 𝑠 AND gates, and for every integer 𝑟 ∈ [22𝑛], one can
modify 22𝑛/𝑟 entries of the truth table matrix 𝑀𝑓 and obtain a matrix of rank at most
(𝑠/ log 𝑟)𝑂(

√
𝑠 log 𝑟).

10.3 Equivalence Between Probabilistic Rank and
Rigidity

In this section, we show that the probabilistic rank of 𝐻𝑛 and the rigidity of 𝐻𝑛 are
the same concept over fields. It is easy to see that if 𝜀-probabilistic rank of 𝐻𝑛 is 𝑘
over a field 𝐾, then the rank-𝑘 rigidity of 𝐻𝑛 is at most 𝜀22𝑛 over 𝐾. Exploiting the
random self-reducibility of the 𝐻𝑛 function, we can show a converse: lower bounds
on probabilistic rank imply proportionate rigidity lower bounds. This is of interest
because probabilistic rank lower bounds appear to be fundamentally easier to prove
than rigidity lower bounds.

Theorem 10.5. For every commutative ring 𝑅 and for every 𝑛, ℛ𝐻𝑛(𝑟) ≤ 𝜀22𝑛 over
𝑅 if and only if 𝐻𝑛 has 𝜀-probabilistic rank 𝑟 over 𝑅.
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First let us give some definitions. Let ⊗ denote the outer product of vectors. For
vectors 𝑎 ∈ 𝐾2𝑛 whose entries are indexed by 𝑣1, . . . , 𝑣2𝑛 ∈ {0, 1}𝑛, and 𝑥, 𝑦 ∈ {0, 1}𝑛,
let 𝑎(𝑥,𝑦) denote the vector in 𝐾2𝑛 given by

𝑎(𝑥,𝑦)[𝑣𝑖] = (−1)⟨𝑣𝑖,𝑦⟩𝑎[𝑣𝑖 ⊕ 𝑥].

This permutes the entries of 𝑎, then negates half of the entries.

Proof. One direction is straightforward: low probabilistic rank implies low rigidity,
by simply drawing a “typical” matrix from the distribution. For the other direction,
suppose 𝑎1, . . . , 𝑎𝑟 and 𝑏1, . . . , 𝑏𝑟 are vectors in 𝑅2𝑛 such that the 2𝑛 × 2𝑛 matrix

𝑀 :=
𝑟∑︁

𝑘=1

𝑎𝑘 ⊗ 𝑏𝑘 (10.3)

differs from 𝐻𝑛 in at most 𝜀22𝑛 entries. Pick vectors 𝑥, 𝑦 ∈ {0, 1}𝑛 uniformly at
random, and consider the 2𝑛 × 2𝑛 matrix

𝑀 ′ = (−1)⟨𝑥,𝑦⟩
𝑟∑︁

𝑘=1

𝑎
(𝑥,𝑦)
𝑘 ⊗ 𝑏(𝑦,𝑥)𝑘 . (10.4)

In this form it is clear that 𝑀 ′ has rank at most 𝑟. We claim that each entry of 𝑀 ′ is
equal to the corresponding entry of 𝐻𝑛 with probability at least 1−𝜀, over the choice
of 𝑥 and 𝑦, which will complete the proof.

Consider a given entry 𝑀 ′(𝑣𝑖, 𝑣𝑗). It is sufficient to show that if 𝑀(𝑣𝑖⊕𝑥, 𝑣𝑗⊕𝑦) =
𝐻𝑛(𝑣𝑖 ⊕ 𝑥, 𝑣𝑗 ⊕ 𝑦) then 𝑀 ′(𝑣𝑖, 𝑣𝑗) = 𝐻𝑛(𝑣𝑖, 𝑣𝑗), since (𝑣𝑖 ⊕ 𝑥, 𝑣𝑗 ⊕ 𝑦) is a uniformly
random pair of vectors in {0, 1}𝑛. Suppose this is the case, meaning𝑀(𝑣𝑖⊕𝑥, 𝑣𝑗⊕𝑦) =
(−1)⟨𝑣𝑖⊕𝑥,𝑣𝑗⊕𝑦⟩. Applying definition (10.3) and then (10.4) we see that

(−1)⟨𝑣𝑖⊕𝑥,𝑣𝑗⊕𝑦⟩ =
𝑟∑︁

𝑘=1

𝑎𝑘[𝑣𝑖 ⊕ 𝑥] · 𝑏𝑘[𝑣𝑗 ⊕ 𝑦]

= (−1)⟨𝑣𝑖,𝑦⟩+⟨𝑣𝑗 ,𝑥⟩
𝑟∑︁

𝑘=1

(−1)⟨𝑣𝑖,𝑦⟩𝑎𝑘[𝑣𝑖 ⊕ 𝑥] · (−1)⟨𝑣𝑗 ,𝑥⟩𝑏𝑘[𝑣𝑗 ⊕ 𝑦]

= (−1)⟨𝑣𝑖,𝑦⟩+⟨𝑣𝑗 ,𝑥⟩
𝑟∑︁

𝑘=1

𝑎
(𝑥,𝑦)
𝑘 [𝑣𝑖] · 𝑏(𝑦,𝑥)𝑘 [𝑣𝑗]

= (−1)⟨𝑣𝑖,𝑦⟩+⟨𝑣𝑗 ,𝑥⟩ · (−1)⟨𝑥,𝑦⟩ ·𝑀 ′(𝑣𝑖, 𝑣𝑗).

Rearranging, we see as desired that

𝑀 ′(𝑣𝑖, 𝑣𝑗) = (−1)⟨𝑣𝑖⊕𝑥,𝑣𝑗⊕𝑦⟩+⟨𝑣𝑖,𝑦⟩+⟨𝑣𝑗 ,𝑥⟩+⟨𝑥,𝑦⟩ = (−1)⟨𝑣𝑖,𝑣𝑗⟩,

where the last step follows from the bilinearity of the inner product ⟨·, ·⟩.

Therefore, proving communication lower bounds for the IP2 function against (for
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example) the class BP · MOD𝑚P is equivalent to proving rigidity lower bounds for
𝐻𝑛 over the ring Z𝑚. Applying our rigidity upper bounds for 𝐻𝑛 (Theorems 10.1
and 10.2), we obtain surprisingly low probabilistic rank bounds for 𝐻𝑛 (and therefore
communication-efficient protocols as well):

Corollary 10.4. For every commutative ring 𝑅, for every sufficiently small 𝜀 > 0,
and for all 𝑛, 𝐻𝑛 has 1/2𝑛(1−𝜀)-probabilistic rank at most 2𝑛−Ω(𝜀2/ log(1/𝜀))𝑛, and 𝜀-
probabilistic rank at most (1/𝜀)𝑂(

√
𝑛 log𝑛), over 𝑅.

10.3.1 Generalization to Random Self-Reducibile Functions

In fact, our reduction from rigidity to probabilistic rank works for any (non-adaptive)
random self-reducible function [FF93] that makes a small number of oracle calls.
Our notion of random self-reducibility is adapted for the communication complexity
setting (for example, we do not care about the feasibility of the reduction).

Definition 10.6. A function 𝑓 : {0, 1}𝑛×{0, 1}𝑛 → {0, 1} is 𝑘-random self-reducible
if there are random sampling procedures 𝑆1, 𝑆2 and a function 𝑔 : {0, 1}𝑘 → {0, 1}
such that:

(a) 𝑆1 takes 𝑥 ∈ {0, 1}𝑛 and a random string 𝑟 and outputs 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛
such that for all 𝑛-bit strings 𝑧, Pr𝑟[𝑥𝑖 = 𝑧] = 1/2𝑛 for all 𝑖,

(b) 𝑆2 takes 𝑦 ∈ {0, 1}𝑛 and a random string 𝑠 and outputs 𝑦1, . . . , 𝑦𝑘 ∈ {0, 1}𝑛
such that for all 𝑛-bit strings 𝑧, Pr𝑠[𝑦𝑖 = 𝑧] = 1/2𝑛 for all 𝑖, and

(c) 𝑓(𝑥, 𝑦) = 𝑔(𝑓(𝑥1, 𝑦1), . . . , 𝑓(𝑥𝑘, 𝑦𝑘)).

Requirements (a) and (b) in the definition ensures that each 𝑥𝑖 and 𝑦𝑖 are uniform
random variables; requirement (c) says that we can reconstruct 𝑓(𝑥, 𝑦) from the values
𝑓(𝑥1, 𝑦1), . . . , 𝑓(𝑥𝑘, 𝑦𝑘).

Theorem 10.6. Let 𝑟, 𝑛 ∈ N and 𝜀 ∈ (0, 1), and let 𝑓 : {0, 1}2𝑛 → {0, 1} be 𝑘-random
self-reducible. Suppose 𝑀𝑓 has rank-𝑟 rigidity at most 𝜀4𝑛 over a commutative ring
𝑅. Then the (𝑘𝜀)-probabilistic rank of 𝑀𝑓 over 𝑅 is at most 𝑂(

(︀
𝑘𝑟
𝑘

)︀
).

Proof. Suppose there is an 2𝑛 × 𝑟 matrix 𝐴 and 𝑟 × 2𝑛 matrix 𝐵, such that 𝑀𝑓 and
𝐴 · 𝐵 differ in at most 𝜀4𝑛 entries. We construct a distribution of low-rank matrices
for 𝑀𝑓 as follows.

Let 𝑃 (𝑧1, . . . , 𝑧𝑘) be the unique multilinear polynomial over 𝑅 that represents the
function 𝑔 from the random self-reduction for 𝑓 . Given 𝑘 rows 𝑋1, . . . , 𝑋𝑘 ∈ 𝐾𝑟 of
𝐴, and 𝑘 columns 𝑌1, . . . , 𝑌𝑘 ∈ 𝐾𝑟 of 𝐵, define a polynomial in 2𝑘𝑟 variables:

𝑄(𝑋1, . . . , 𝑋𝑘, 𝑌1, . . . , 𝑌𝑘) = 𝑃 (⟨𝑋1, 𝑌1⟩ , . . . , ⟨𝑋𝑘, 𝑌𝑘⟩).

Treating each term of the form 𝑋𝑖[𝑗] ·𝑌𝑖[𝑗] as a variable, 𝑄 can be written as a sum of
𝑡 ≤

(︀
𝑘𝑟
𝑘

)︀
total terms. Call the terms 𝑚1, . . . ,𝑚𝑡, each of which are over 2𝑘𝑟 variables.
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Let 𝑟 be a random string for 𝑆1 and 𝑠 be a random string for 𝑆2. For 𝑥 ∈ {0, 1}𝑛,
let 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 be the outputs of 𝑆1(𝑥) with randomness 𝑟. We define the
𝑥th row of a new 2𝑛 × 𝑡 matrix 𝐴𝑟 to be(︁

𝑚1(𝐴[𝑥1, :], . . . , 𝐴[𝑥𝑘, :], 1⃗, . . . , 1⃗), . . . ,𝑚𝑡(𝐴[𝑥1, :], . . . , 𝐴[𝑥𝑘, :], 1⃗, . . . , 1⃗)
)︁
.

For 𝑦 ∈ {0, 1}𝑛, let 𝑦1, . . . , 𝑦𝑘 be the outputs of 𝑆2(𝑥) with randomness 𝑠. Define the
𝑦th column of a new 𝑡× 2𝑛 matrix 𝐵𝑠 to be(︁

𝑚1(⃗1, . . . , 1⃗, 𝐵[:, 𝑦1], . . . , 𝐵[:, 𝑦𝑘]), . . . ,𝑚𝑡(⃗1, . . . , 1⃗, 𝐵[:, 𝑦1], . . . , 𝐵[:, 𝑦𝑘])
)︁𝑇

.

Then, for all (𝑥, 𝑦) ∈ {0, 1}𝑛 × {0, 1}𝑛, the inner product of the 𝑥th row of 𝐴𝑟 and
the 𝑦th column of 𝐵𝑠 is∑︁

𝑖

𝑚𝑖(𝐴[𝑥1, :], . . . , 𝐴[𝑥𝑘, :], 𝐵[:, 𝑦1], . . . , 𝐵[:, 𝑦𝑘])

= 𝑄(𝐴[𝑥1, :], . . . , 𝐴[𝑥𝑘, :], 𝐵[:, 𝑦1], . . . , 𝐵[:, 𝑦𝑘])

= 𝑃 (⟨𝐴[𝑥1, :], 𝐵[:, 𝑦1]⟩ , . . . , ⟨𝐴[𝑥𝑘, :], 𝐵[:, 𝑦𝑘]⟩).

Since (𝐴 ·𝐵) differs from 𝑀𝑓 on an 𝜀-fraction of entries, for uniform random 𝑥𝑖, 𝑦𝑗 ∈
{0, 1}𝑛 we have ⟨𝐴[𝑥𝑖, :], 𝐵[:, 𝑦𝑖]⟩ ≠ 𝑓(𝑥𝑖, 𝑦𝑖) with probability at most 𝜀. So with
probability at least 1− 𝑘𝜀, 𝑓(𝑥𝑖, 𝑦𝑖) = ⟨𝐴[𝑥𝑖, :], 𝐵[:, 𝑦𝑖]⟩ for all 𝑖 = 1, . . . , 𝑘. Thus the
polynomial 𝑃 (⟨𝐴[𝑥1, :], 𝐵[:, 𝑦1]⟩ , . . . , ⟨𝐴[𝑥𝑘, :], 𝐵[:, 𝑦𝑘]⟩) being implemented by 𝐴𝑟 ·𝐵𝑠

outputs 𝑓(𝑥, 𝑦) with probability at least 1−𝑘𝜀. Hence all matrices 𝐶𝑟,𝑠 = 𝐴𝑟 ·𝐵𝑠 in our
defined distribution have rank at most 𝑂(

(︀
𝑘𝑟
𝑘

)︀
), and for every (𝑥, 𝑦) ∈ {0, 1}𝑛×{0, 1}𝑛,

Pr𝑟,𝑠[𝐶𝑟,𝑠[𝑥, 𝑦] = 𝑓(𝑥, 𝑦)] ≥ 1− 𝑘𝜀.

10.4 Explicit Rigid Matrices and Threshold Circuits

In this section, we show how explicit rigidity lower bounds would also imply circuit
lower bounds where we currently only know weak results (e.g., we know that some
functions in ENP do not have such circuits).

Theorem 10.7. For every constant 𝛿 > 0 and every AC0 ∘ LTF ∘AC0 ∘ LTF circuit 𝐶
of size-𝑠 = 𝑛2−𝛿 and depth-𝑑 = 𝑜(log(𝑛)/ log log(𝑛/𝜀)), there exists a 𝛾 > 0 such that
the truth table of 𝐶 as a 2𝑛/2×2𝑛/2 matrix 𝑀𝐶 has rigidity ℛ𝑀𝐶

(︁
2𝑛1−𝛾 log(1/𝜀)

)︁
≤ 𝜀2𝑛,

for all 𝜀 ∈ (1/2𝑛, 1), over any commutative ring.

Our proof will use a technique by Maciel and Therien for converting each middle
layer LTF gate into an equivalent AC0 ∘MAJ circuit:

Theorem 10.8 ([MT98] Theorem 3.3, [ACW16] Theorem 7.1). For every 𝛼 > 0,
every LTF on 𝑛 inputs can be computed by a polynomial-size AC0 ∘MAJ circuit where
the fan-in of each MAJ gate is 𝑛1+𝛼 and the circuit has depth 𝑂(log(1/𝛼)).
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We will also use Tarui’s probabilistic polynomial for AC0:

Theorem 10.9 ([Tar93] Theorem 3.6). Every circuit in AC0 with depth 𝑑 has a prob-
abilistic polynomial over Z (and hence, any commutative ring) of degree 𝑂(log𝑑(𝑛))

and error 1/2log𝑂(1)(𝑛).

Proof of Theorem 10.7. By Lemma 10.7, each LTF gate in the bottom layer has
𝜀/𝑠-probabilistic rank 𝑂(𝑛2𝑠/𝜀). We will design a probabilistic polynomial for the
upper AC0 ∘ LTF ∘ AC0 circuitry, which will give the desired result when composed
with this probabilistic rank expression.

First, each LTF gate in the middle layer has fan-in at most 𝑠 = 𝑛2−𝛿. Applying
Theorem 10.8 with 𝛼 = 𝛿/2 to each, the upper AC0 ∘ LTF ∘ AC0 circuit becomes a
AC0 ∘MAJ ∘ AC0 where each MAJ gate has fan-in at most 𝑛(2−𝛿)(1+𝛿/2) = 𝑛2−𝛿2/2, and
the depth is still 𝑂(𝑑).

We can now apply the probabilistic polynomial for AC0 from Theorem 10.9 with de-
gree 𝑂(log𝑑(𝑛)) error 1/2log𝑂(1)(𝑛) to the AC0 circuits, and the probabilistic probabilis-
tic polynomial for symmetric functions on 𝑛2−𝛿2/2 bits from Theorem 7.3 with error 𝜀/𝑠
and degree 𝑂(𝑛1−𝛿2/4 log(𝑠/𝜀)) to the MAJ gates in the middle. This results in a prob-
abilistic polynomial of degree 𝑂(𝑛1−𝛿2/4 log𝑂(𝑑)(𝑛/𝜀)). For 𝑑 = 𝑜(log(𝑛)/ log log(𝑛/𝜀)),
this is 𝑂(𝑛1−𝛽) for any 𝛽 ∈ (0, 𝛿2/4).

We can view the terms in the probabilistic rank expression for the LTF gates in
the bottom layer as variables that we substitute into this probabilistic polynomial;
the number of monomials in this expansion will upper bound the rank, as in Lemma
10.1. Since there are at most 𝑠 such gates, and each probabilistic rank expression has
𝑂(𝑛2𝑠/𝜀) terms, we are substituting 𝑂(𝑛2𝑠2/𝜀) terms into our polynomial. Hence,
the number of monomials will be upper bounded by

(𝑛2𝑠2/𝜀)𝑂(𝑛1−𝛽) = 2𝑂(𝑛1−𝛾) log(1/𝜀),

for any 𝛾 < 𝛽. This is of the desired form, where we can pick any positive value
𝛾 < 𝛿2/4. The correctness follows by union bounding over all ≤ 𝑠 probabilistic
substitutions we make, each of which has error probability at most 𝜀/𝑠. �

From the above theorem, setting the error 𝜀 appropriately, we infer a new conse-
quence of explicit rigid matrices:

Theorem 10.10. Let 𝑅 be any commutative ring, and {𝑀𝑛} be a family of Boolean
matrices such that (a) 𝑀𝑛 is 𝑛× 𝑛, (b) there is a poly(log 𝑛) time algorithm 𝐴 such
that 𝐴(𝑛, 𝑖, 𝑗) prints 𝑀𝑛(𝑖, 𝑗), and (c) there is a 𝛿 > 0 such that for infinitely many
𝑛,

ℛ𝑀𝑛

(︁
2(log𝑛)1−𝛿

)︁
≥ 𝑛2

2(log𝑛)𝛿/2
over 𝑅.

Then the language {(𝑛, 𝑖, 𝑗) | 𝑀𝑛(𝑖, 𝑗) = 1} ∈ P does not have AC0 ∘ LTF ∘ AC0 ∘ LTF
circuits of 𝑛2−𝜀-size and 𝑜(log 𝑛/ log log 𝑛)-depth, for all 𝜀 > 0.

Therefore, proving strong rigidity lower bounds for explicit matrices has conse-
quences for Boolean circuit complexity as well. Indeed, the desired circuit lower
bounds could be derived from lower-bounding probabilistic rank.
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10.5 Sign-Rank Rigidity and Depth-Two Threshold
Circuits

Given a matrix 𝐴 ∈ R𝑛×𝑛, its sign rank is the minimum rank of any 𝐵 ∈ {−1, 1}𝑛×𝑛

such that sign(𝐴[𝑖, 𝑗]) = sign(𝐵[𝑖, 𝑗]) for all 𝑖, 𝑗 ∈ [𝑛]. The 𝜀-probabilistic sign-rank of
𝐴 is defined analogously as with probabilistic rank. We say 𝐴 has sign rank 𝑟-rigidity
𝑡 if a minimum of 𝑡 entries of 𝐴 need to be modified in order for 𝐴 to have sign rank
at most 𝑟.

First, we observe that in the sign-rank setting, random -1/1 matrices are still rigid:
for example, with high probability, a random -1/1 matrix has sign-rank-(𝑛/ log2 𝑛)
rigidity at least Ω(𝑛2). The proof follows readily from recent work:

Theorem 10.11 (Follows from Alon-Moran-Yehudayoff [AMY16]). Let 𝑟(𝑛) =
𝑜(𝑛/ log 𝑛). For all sufficiently large 𝑛, a random 𝑛 × 𝑛 matrix with −1/1 entries
has sign-rank-𝑟(𝑛) rigidity at least Ω(𝑛2), with high probability.

Proof. There are 2𝑛2 different 𝑛 × 𝑛 matrices over {−1, 1}. The number of distinct
matrices with sign rank at most 𝑟 is bounded by 2𝑂(𝑟𝑛 log𝑛) [AMY16]. For a fixed
{−1, 1} matrix 𝑀 , the number of {−1, 1} matrices within Hamming distance 𝑑 of 𝑀
is at most 𝑂(

(︀
𝑛2

𝑡

)︀
). Thus the number of matrices for which up to 𝑡 entries can be

changed to obtain a matrix of sign rank at most 𝑟, is upper-bounded by

2𝑂(𝑟𝑛 log𝑛) ·
(︂
𝑛2

𝑡

)︂
≤ 𝑛𝑂(𝑟𝑛) · (𝑒𝑛2/𝑡)𝑡.

Suppose we set 𝑡 = 𝜀𝑛2. Then the above quantity is at most

𝑛𝑂(𝑟𝑛) · (𝑒/𝜀)𝜀𝑛2

.

For 𝑟 = 𝑜(𝑛/ log 𝑛) and 𝜀 log2(𝑒/𝜀) < 1, a random matrix is not among these matrices
with high probability. Therefore a random matrix has sign rank-𝑜(𝑛/ log 𝑛) rigidity
Ω(𝑛2) with high probability.

Even though most -1/1 matrices have high sign-rank rigidity, we show that the
truth table of a small LTF ∘ LTF circuit is always close to a matrix of low sign-rank.
For even 𝑛, we say a function 𝑓 : {0, 1}𝑛 → {0, 1} has 𝜀-probabilistic sign rank 𝑟 if
the truth table of 𝐶 construed as a 2𝑛/2× 2𝑛/2 matrix has 𝜀-probabilistic sign-rank 𝑟.

Theorem 10.12. For every function 𝑓 with a LTF ∘ LTF circuit of size 𝑠, and every
𝜀 > 0, the 𝜀-probabilistic sign-rank of 𝑓 is 𝑂(𝑠2𝑛2/𝜀). Moreover, we can sample a
low-rank matrix from the distribution of matrices in 2𝑛/2 · poly(𝑠, 𝑛) time.

We will prove this theorem in a few steps. Let 𝐸𝑄𝑛 : {0, 1}2𝑛 → {0, 1} be
the equality function, i.e., 𝐸𝑄𝑛(𝑥, 𝑥) = [𝑥 = 𝑦] (using Iverson bracket notation).
Similarly, let 𝐿𝐸𝑄𝑛 : {0, 1}2𝑛 → {0, 1} be the function 𝐿𝐸𝑄𝑛(𝑥, 𝑥) = [𝑥 ≤ 𝑦] where
𝑥 and 𝑦 are interpreted as integers in {0, . . . , 2𝑛 − 1}.
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Lemma 10.5. For every 𝑛, 𝐸𝑄𝑛 has 𝜀-probabilistic rank at most 𝑂(1/𝜀) over any
commutative ring.

Proof. We mimic a well-known randomized communication protocol for 𝐸𝑄𝑛. Pick
𝑘 = ⌈log2(1/𝜀)⌉ uniformly random subsets 𝑆1, . . . , 𝑆𝑘 ⊆ {0, 1}𝑛, and define the hash
functions ℎ1, . . . , ℎ𝑘 : {0, 1}𝑛 → {0, 1} by ℎ𝑖(𝑥) =

⨁︀
𝑗∈𝑆𝑖

𝑥𝑗. Note that ℎ𝑖(𝑥) ̸= ℎ𝑖(𝑦)
with 1/2 chance if 𝑥 ̸= 𝑦. Hence, the following expression equals 𝐸𝑄(𝑥, 𝑦) with error
probability at most 𝜀:

𝑘∏︁
𝑖=1

(ℎ𝑖(𝑥)ℎ𝑖(𝑦) + (1− ℎ𝑖(𝑥))(1− ℎ𝑖(𝑦))). (10.5)

When expanded out, (10.5) is a sum of 2𝑘 = 𝑂(1/𝜀) terms of the form 𝑓(𝑥) · 𝑔(𝑦) for
some functions 𝑓 and 𝑔, each of which has rank one.

Lemma 10.6. For every 𝑛, 𝐿𝐸𝑄𝑛 has 𝜀-probabilistic rank at most 𝑂(𝑛2/𝜀) over any
commutative ring.

Proof. We express 𝐿𝐸𝑄𝑛 in terms of 𝐸𝑄 predicates which check for the first bit in
which 𝑥 and 𝑦 differ, as

𝐿𝐸𝑄𝑛(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) =
𝑛∑︁

𝑖=1

(1− 𝑥𝑖) · 𝑦𝑖 · 𝐸𝑄𝑖−1(𝑥1, . . . , 𝑥𝑖−1, 𝑦1, . . . , 𝑦𝑖−1).

(10.6)

We then get the desired rank bound by replacing each 𝐸𝑄 with the probabilistic rank
expression from Lemma 10.5 with error 𝜀/𝑛. By the union bound, all 𝑛 of the 𝐸𝑄
predicates will be correct with probability at least 1− 𝜀, and hence we will correctly
compute 𝐿𝐸𝑄𝑛.

Lemma 10.7. For every 𝑛, every linear threshold function 𝑓 : {0, 1}2𝑛 → {0, 1} has
𝜀-probabilistic rank 𝑂(𝑛2/𝜀) over any commutative ring.

Proof. A linear threshold function 𝑓 is defined as 𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) =
[
∑︀

𝑖 𝑣𝑖𝑥𝑖 +
∑︀

𝑖𝑤𝑖𝑦𝑖 ≥ 𝑘], where all 𝑣𝑖’s, 𝑤𝑖’s, and 𝑘 are reals. We want to show that
the 2𝑛 × 2𝑛 matrix indexed by 𝑥𝑖-assignments on the rows and 𝑦𝑖-assignments on the
columns has low probabilistic rank. We will exploit the fact that the linear forms on
𝑥𝑖’s and 𝑦𝑖’s can be preprocessed separately in a rank decomposition.

Define 𝑎 : {0, 1}𝑛 → R by 𝑎(𝑥1, . . . , 𝑥𝑛) =
∑︀𝑛

𝑖=1 𝑣𝑖𝑥𝑖, and 𝑏 : {0, 1}𝑛 → R by
𝑏(𝑦1, . . . , 𝑦𝑛) = 𝑘 −

∑︀𝑛
𝑗=1𝑤𝑖𝑦𝑖. Hence

𝑓(𝑥, 𝑦) = [𝑎(𝑥) ≤ 𝑏(𝑦)] .

Let 𝐿 be the list, sorted in increasing order, of all values of 𝑎(𝑥) and 𝑏(𝑦), for all
𝑥 ∈ {0, 1}𝑛 and 𝑦 ∈ {0, 1}𝑛. Then define the function 𝛼 : {0, 1}𝑛 → {0, 1}𝑛+1 where
𝛼(𝑥) equals the earliest index of 𝑎(𝑥) in the sorted list 𝐿, interpreted as a 𝑛 + 1 bit

176



number. Define 𝛽 : {0, 1}𝑛 → {0, 1}𝑛+1 similarly. Then

𝑓(𝑥, 𝑦) = 𝐿𝐸𝑄𝑛+1(𝛼(𝑥), 𝛽(𝑦)).

So the 𝜀-probabilistic rank of 𝑀𝑓 is at most that of 𝑀𝐸𝑄𝑛+1 , which we upper-bounded
in Lemma 10.6.

Now we are ready to upper-bound the probabilistic sign-rank of depth-two thresh-
old circuits:

Proof of Theorem 10.12. We interpret our LTF ∘ LTF circuit 𝐶 as a function on
two groups of 𝑛/2 bits, 𝑥1, . . . , 𝑥𝑛/2, and 𝑦1, . . . , 𝑦𝑛/2. Let 𝑤1, . . . , 𝑤𝑠, 𝑘 ∈ R be the
weights of the output gate, so that

𝐶(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) =

[︃
𝑠∑︁

𝑖=1

𝑤𝑖 · 𝑓𝑖(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) ≤ 𝑘

]︃
,

for 𝑠 different LTF functions 𝑓𝑖. By Lemma 10.7, the truth table matrix 𝑀𝑓𝑖 of each 𝑓𝑖
has (𝜀/𝑠)-probabilistic rank 𝑟 = 𝑂(𝑛2𝑠/𝜀). Our probabilistic distribution of matrices
for 𝑀𝐶 can be constructed as follows: for all 𝑖 = 1, . . . , 𝑠, draw a random rank-𝑟
matrix 𝑃𝑖 from the distribution for 𝑀𝑓𝑖 , and set

𝑄𝐶 = (−𝑘 · 𝐽) +
∑︁
𝑖

(𝑤𝑖 · 𝑃𝑖),

where 𝐽 is the all-1s matrix. 𝑄𝐶 has rank at most 𝑠𝑟 + 1 ≤ 𝑂(𝑛2𝑠2/𝜀) and for all
(�⃗�, �⃗�), Pr[sign(𝑄𝐶 [�⃗�, �⃗�]) ̸= 𝐶(�⃗�, �⃗�)] ≤ 𝜀. �

Are there explicit matrices with non-trivial sign-rank rigidity? We observe that
the best-known rank rigidity lower bounds for 𝐻𝑛 extend to sign-rank rigidity:

Theorem 10.13 (Follows from Razborov and Sherstov [RS10]). For all 𝑛, and 𝑟 ∈
[2𝑛/2, 2𝑛], the sign-rank-𝑟 rigidity of 𝐻𝑛 is at least Ω(4𝑛/𝑟).

Proof. Theorem 5.1 of [RS10] gives the following lower bound on sign-rank: given
any matrix 𝐴 ∈ {−1, 1}𝑛×𝑛, suppose that all but ℎ entries of matrix 𝐴 have absolute
value at least 𝛾. Then

sign-rank(𝐴) ≥ 𝛾𝑛2

||𝐴||𝑛+ 𝛾ℎ
,

where ||𝐴|| is the spectral norm of 𝐴. For the case of 𝐻𝑛, if we modify ℎ := 4𝑛/𝑟
entries arbitrarily, all but ℎ entries have absolute value equal to 1. Thus

sign-rank(𝐻𝑛) ≥ 4𝑛

||𝐻𝑛||𝑛+ 4𝑛/𝑟
.

As ||𝐻𝑛|| ≤ 𝑂(2𝑛/2) [For02], we have sign-rank(𝐻𝑛) ≥ Ω(4𝑛/(23𝑛/2+4𝑛/𝑟)) ≥ Ω(2𝑛/2+
𝑟) ≥ Ω(𝑟).
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Can the above lower bound be improved slightly? Combining the previous two
theorems, it follows that any minor improvement in the above rank/rigidity trade-off
would begin to imply lower bounds for LTF ∘ LTF:

Theorem 10.14. Suppose there is an 𝛼 > 0 such that for infinitely many 𝑛, the sign
rank 𝑟-rigidity of 𝐻𝑛 is Ω(4𝑛/𝑟1−𝛼), for some 𝑟 ≥ 𝜔(𝑛2/𝛼𝑠(𝑛)2/𝛼). Then the Inner
Product Modulo 2 does not have LTF ∘ LTF circuits of 𝑠(𝑛) gates.

Proof. Suppose the sign rank 𝑟-rigidity of 𝐻𝑚 is Ω(4𝑛/𝑟1−𝛼). Let 𝜀 = 1/𝑟1−𝛼. It
follows that the 𝜀-probabilistic sign-rank of 𝐻𝑛 is greater than 𝑟. But for a LTF ∘LTF
function with 𝑠 gates, its matrix always has Ω(𝜀)-probabilistic rank 𝑂(𝑠2𝑛2/𝜀) =
𝑂(𝑠2𝑛2𝑟1−𝛼), by Theorem 10.12. Thus we have a contradiction when 𝑂(𝑠2𝑛2𝑟1−𝛼) is
asymptotically less than 𝑟, i.e.,

𝑟 = 𝜔(𝑛2/𝛼𝑠2/𝛼),

corresponding to an 𝑠-gate lower bound against LTF ∘LTF circuits. Since 𝐻𝑛 is just a
linear translation of the matrix for Inner Product Modulo 2, the proof is complete.

For instance, proving the sign-rank 2𝛼𝑛-rigidity of𝐻𝑛 is at least 4𝑛/2.999𝛼𝑛 for some
𝛼 > 0 would imply exponential-gate lower bounds for depth-two threshold circuits
computing IP2.

10.6 Equivalence Between Probabilistic Rank Mod-
ulo m and BP-MODm Communication Com-
plexity

We conclude this Part by expanding on the connection between probabilistic rank and
communication complexity. We sketch how probabilistic rank over Z𝑚 is equivalent
to BP ·MOD𝑚P communication complexity:

Proposition 10.2. Let 𝑚 > 1 be an integer, let 𝑓 : {0, 1}𝑛×{0, 1}𝑛 → {0, 1}, and let
𝑀𝑓 be its truth table matrix. Let 𝐶𝜀(𝑓) be the BP ·MOD𝑚P communication complexity
of 𝑓 with error 𝜀, and let 𝜀-rankZ𝑚(𝑀𝑓 ) be the 𝜀-probabilistic rank of 𝑀𝑓 over Z𝑚.
Then 𝐶𝜀(𝑓) ≤ log2(𝜀-rankZ𝑚(𝑀𝑓 ) + 1) ≤ 2𝐶𝜀(𝑓).

This proposition is different from the one quoted in the introduction (giving
constant-factor equivalences between the log of the rank and the communication
complexity) because we are assuming a more stringent communication model here.
However, the more general model is often taken as the definition, in which case the
probabilistic rank and communication complexity truly coincide.

First, given a distribution of low-rank matrices for 𝑀𝑓 , it is easy to construct a
protocol for 𝑓 : Alice and Bob publicly randomly sample a matrix from the distribu-
tion, which is a product of two matrices 𝐴 and 𝐵. Alice takes the row of 𝐴 of length
𝑟 corresponding to her input, Bob takes the column of 𝐵 of length 𝑟 corresponding
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to his, and they then compute the inner product of these two vectors over Z𝑚 with
⌈log2(𝑟 + 1)⌉ communication in the MOD𝑚P model.

To construct a distribution of matrices from communication protocols, we do a
simple modification of the BPP⊕P communication model. In fact, sometimes the liter-
ature defines the BPP⊕P communication model in this modified way [GPW16]. After
the public randomness is chosen, Alice and Bob can, along with their 𝑐 nondetermin-
istic bits, also sum over all possible transcripts of at most 𝑐 bits between them. For
each choice of randomness and nondeterminism there is a unique accepting transcript,
so this extra choice does not alter the number of accepting communication patterns.
But in this modified version, now Alice and Bob do not even have to communicate:
they only have to send a single bit indicating whether they would accept or not, given
the transcript and the nondeterminism. From such a protocol, it is straightforward
to construct a 2𝑛 × 22𝑐 matrix 𝐴 representing Alice’s protocol and a 22𝑐 × 2𝑛 matrix
𝐵 representing Bob, for any given string of public randomness.
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Chapter 11

Efficient Construction of Rigid
Matrices Using an NP Oracle

11.1 Construction Overview
In this Chapter, we give our new PNP construction of rigid matrices:

Theorem 11.1 (An Infinitely Often Rigid Matrix Construction in PNP). There is an
absolute constant 𝛿 > 0 such for all prime powers 𝑞 = 𝑝𝑟 and all constants 𝜀 > 0:

∙ There is a PNP machine 𝑀 such that, for infinitely many 𝑁 , on input 1𝑁 , 𝑀
outputs an 𝑁 ×𝑁 matrix 𝐻𝑁 ∈ {0, 1}𝑁×𝑁 such that R𝐻𝑁

(2(log𝑁)1/4−𝜀
) ≥ 𝛿 ·𝑁2

over F𝑞.

Along the way, we also give the following conditional construction which achieves
better parameters:

Theorem 11.2 (Either a Better Construction in PNP or NQP ̸⊂ P/poly). There is an
absolute constant 𝛿 > 0 such that for all prime powers 𝑞 = 𝑝𝑟 and all constants 𝜀 > 0,
at least one of the following holds:

∙ NQP ̸⊂ P/poly.

∙ There is a PNP machine 𝑀 such that, for infinitely many 𝑁 , on input 1𝑁 , 𝑀
outputs an 𝑁 ×𝑁 matrix 𝐻𝑁 ∈ {0, 1}𝑁×𝑁 such that R𝐻𝑁

(2(log𝑁)1−𝜀
) ≥ 𝛿 ·𝑁2

over F𝑞.

We begin, in this Section, with an overview of both of these constructions. In the
rest of the Chapter we will give the formal proof and all the details, and then discuss
some applications. For simplicity, we only consider the field F2 in this overview.

11.1.1 Either NE ̸⊂ P/poly or a Construction of Rigid Matrices

We begin with a proof overview of Theorem 11.2. Note that Theorem 11.2 is equiva-
lent to saying that there is a rigid matrix construction in PNP under the assumption
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NQP ⊂ P/poly. Here we outline a conditional construction under the stronger assump-
tion NE ⊂ P/poly for simplicity. We will then show how to get rid of the assumption
using an additional bootstrapping argument.

Theorem 11.3 (Either a Better Construction in PNP or NE ̸⊂ P/poly). There is an
absolute constant 𝛿 > 0 such that for all constants 𝜀 > 0, at least one of the following
holds:

∙ NE ̸⊂ P/poly.

∙ There is a PNP machine 𝑀 such that, for infinitely many 𝑁 , on input 1𝑁 , 𝑀
outputs an 𝑁 ×𝑁 matrix 𝐻𝑁 ∈ {0, 1}𝑁×𝑁 such that R𝐻𝑁

(2(log𝑁)1−𝜀
) ≥ 𝛿 ·𝑁2

over F𝑞.

Low-Rank Matrices as a Circuit Class, and Corresponding Circuit Analysis
Algorithms. We begin with the observation that we can view low-rank matrices
over F2 as a special type of ‘circuit’ defined by a pair of matrices. That is, supposing
𝑀 ∈ F𝑁×𝑁

2 is a matrix with rank 𝑟 (think of 𝑟 ≪ 𝑁), then there are matrices 𝐴 ∈
F𝑁×𝑟
2 and𝐵 ∈ F𝑟×𝑁

2 such that𝑀 = 𝐴·𝐵. Assuming𝑁 is a power of 2 for simplicity, 𝑀
can be interpreted as (the truth-table of) a Boolean function 𝑓 : {0, 1}2 log𝑁 → {0, 1},
which has a special type of circuit of size 𝑂(𝑁 · 𝑟) defined by 𝐴 and 𝐵.

In this way, our task of constructing rigid matrices can equivalently be viewed as
the task of proving a certain average-case lower bound against this special class of
circuits. This is how Williams’ algorithmic approach [Wil13, Wil14c], which exploits
circuit analysis algorithms to prove such lower bounds, comes into play. When given
the matrices 𝐴,𝐵, the corresponding circuit analysis questions are:

1. Satisfiability (SAT), which asks whether 𝐴 ·𝐵 is the all zero matrix,

2. Derandomization (CAPP), which asks for an estimate of the probability that a
random entry of 𝐴 ·𝐵 is 1, and

3. Counting (#SAT), which asks for the exact number of ones in 𝐴 ·𝐵.

In fact, we observe that given the pair (𝐴,𝐵), we can solve the hardest of these
three problems, #SAT, in better-than-2𝑛 time (note 𝑛 = 2 log𝑁). More formally, let
𝑎𝑖 denote the 𝑖-th row of 𝐴, and let 𝑏𝑗 denote the 𝑗-th column of 𝐵. The goal of #SAT
is to count the number of pairs such that ⟨𝑎𝑖, 𝑏𝑗⟩ = 0 (the number of ones is 𝑁2 minus
the number of zeros). This is exactly an instance of Counting OV over F2 (F2-#OV),
with 𝑁 vectors of 𝑟 dimensions; compared to the usual OV problem, our inner product
here is over F2 instead of Z. An algorithm by Chan and Williams [CW16] solves this
problem in deterministic 𝑁2−Ω(1/ log(𝑟/ log𝑁)) time, for all 𝑟 ≤ 𝑁 𝑜(1) (see Section 11.6
for the details). This algorithm will play a crucial part in our construction.
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Williams’ Algorithmic Approach to Circuit Lower Bounds, and a First
Attempt. In a seminal work [Wil13], Williams demonstrated an algorithmic ap-
proach to proving circuit lower bounds. At a high level, the approach works as
follows: Assuming a circuit lower bound is false, one combines the resulting small
circuits with other algorithmic ideas to get a better-than-2𝑛 non-deterministic algo-
rithm for NTIME[2𝑛], therefore contradicting the non-deterministic time hierarchy
theorem [Zák83].

A first attempt at using this approach in our situation proceeds as follows. Let
𝐿 be a unary language in NTIME[2𝑛] ∖ NTIME[2𝑛/𝑛] [Zák83]. Fix an efficient PCP
verifier 𝑉 for 𝐿 (such as [BV14]). That is, for a function ℓ := ℓ(𝑛) = 𝑛 + 𝑂(log 𝑛),
𝑉 (1𝑛) takes ℓ random inputs, runs in poly(𝑛) time, and is given access to an oracle
𝑂 : {0, 1}ℓ → {0, 1} (𝑂 corresponds to the length-2ℓ proof for 𝑉 , but we will interpret
it as an ℓ-bit Boolean function to help with intuition later on), and satisfies the
following conditions:

1. (PCP Completeness) if 1𝑛 ∈ 𝐿, then there exists an oracle 𝑂 such that 𝑉 (1𝑛)𝑂

always accepts;

2. (PCP Soundness) if 1𝑛 /∈ 𝐿, then for all possible oracles 𝑂, the probability
𝑉 (1𝑛)𝑂 accepts is ≤ 1/3.

Intuitively, we are going to show that the truth table of the oracle 𝑂 which makes
𝑉 always accept (in the PCP Completeness case) has to be a rigid matrix. More
precisely, letting 𝑁 = 2ℓ/2, we can fix a PNP machine 𝑀rigid such that, on input 1𝑁 ,
𝑀rigid(1

𝑁) outputs the lexicographically first oracle 𝑂𝑛 which makes 𝑉 (1𝑛) always
accept. 𝑀rigid runs in PNP (on input 1𝑁 , which has length 2Ω(𝑛)), since it can guess
the oracle outputs bit by bit, using its NP oracle to verify its guesses. The output of
𝑀rigid(1

𝑁), and hence 𝑂𝑛 itself, can be viewed as a matrix from {0, 1}𝑁×𝑁 which we
want to show is rigid.

Assume toward a contradiction that R𝑀rigid(1𝑁 )(𝑟) ≤ 𝛿 ·𝑁2 for a small constant 𝛿
(one can think of 𝑟 := 2(log𝑁)1−𝜀 for a small constant 𝜀 > 0) for all 𝑁 . It follows that
𝑂𝑛 can be (1− 𝛿)-approximated by a matrix of rank at most 𝑟. We can thus attempt
to solve 𝐿 as follows:

∙ Given an input 1𝑛, we guess matrices 𝐴 ∈ F𝑁×𝑟
2 and 𝐵 ∈ F𝑟×𝑁

2 in ̃︀𝑂(𝑟 · 2𝑛/2)
time, with the hope that 𝑀 := 𝐴 ·𝐵 approximates 𝑂𝑛.

∙ We estimate
𝑝acc(𝑀) = Pr

𝜏∈{0,1}ℓ
[𝑉 (1𝑛)𝑀(𝜏) = 1],

and accept only if 𝑝acc(𝑀) ≥ 2/3.

Following Williams’ approach, the hope is that we can estimate 𝑝acc(𝑀) in 2𝑛/𝑛 time
(i.e. faster than iterating over all choices of the randomness 𝜏) by taking advantage of
the given low-rank approximation of 𝑀 , combined with the #SAT algorithm for low
rank matrices. If this were possible, it would put 𝐿 in NTIME[2𝑛/𝑛], and contradict
the non-deterministic time hierarchy theorem, completing our proof.
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Two Issues with the First Attempt. Unfortunately, there are two main issues
with this attempt. The first issue is that 𝑉 (1𝑛)𝑀(·) can no longer be written as a low-
rank matrix, even if 𝑀 can. Ideally we would like 𝑉 (1𝑛)𝑀(·) to be a low-rank matrix
so that our #SAT algorithm applies to estimate 𝑝acc(𝑀); without this condition, it’s
unclear how the low-rank matrix 𝑀 is helpful. From [BV14], one can actually take
𝑉 (1𝑛) to be a 3-CNF, but this is still not enough, since a 3-CNF of low-rank matrices
is not necessarily a low-rank matrix.

The second issue is more subtle. If we can estimate 𝑝acc(𝑀) with a high enough
accuracy, clearly we will always reject when 1𝑛 /∈ 𝐿, by the soundness of the PCP.
But, in order to accept when 1𝑛 ∈ 𝐿, even if we have guessed an 𝑀 which (1 − 𝛿)-
approximates 𝑂𝑛, it still could be the case that 𝑝acc(𝑀) is small. For instance, what
if 𝑉 (1𝑛) always queries positions on which 𝑀 and 𝑂𝑛 differ?

We will ultimately resolve the second issue by making the verifier smooth (meaning
each query is uniformly distributed), which we will explain later. To resolve the first
issue, we use a recent idea from Chen and Williams [CW19b], together with easy-
witness lemmas [IKW02, MW18].

The Easy Witness Lemma. Assuming NE ⊂ P/poly, by [IKW02], we know that
all NE verifiers have polynomial-size witness circuits, including the verifier 𝑉 (1𝑛)
discussed above. In other words, when 1𝑛 ∈ 𝐿, before we were only able to assume
there is an oracle 𝑂 : {0, 1}ℓ → {0, 1} such that 𝑉 (1𝑛)𝑂 always accepts, but now we
can further assume that there is such an oracle which is computed by a circuit 𝐶 :
{0, 1}ℓ → {0, 1} of size 𝑛𝑘 for a constant 𝑘. Let us set 𝐶best to be the lexicographically
first circuit having this property. Now we can modify our algorithm from the first
attempt by guessing 𝐶, and trying to estimate 𝑝acc(𝐶) instead. Notice that with
this modification, there are no longer any low-rank matrices involved in our current
approach. We will instead use low-rank approximations of the proof for a different
PCP, which we describe next.

Smooth PCP of Proximity (PCPP). We are now going to make use of a very
recent construction of a smooth PCPP [Par19]. Using PCPPs in conjunction with
Williams’ algorithmic approach to circuit lower bounds in this way was a key idea
from [CW19b]. For a polynomial-size circuit 𝐹 : {0, 1}𝑛 → {0, 1} (we are eventually
going to pick 𝐹 to be a modification of the circuit 𝐶 from above), a smooth PCPP
verifier 𝑉C-EVAL(𝐹 ) for 𝐹 1 takes as input a proof 𝜋 of length poly(𝑛) and 𝑂(log 𝑛)
random bits, and makes a constant number of uniformly distributed, non-adaptive
queries to the proof and the input (i.e. which bits are queries depend only on the
random bits, and each bit has an equal probability of being queried). Moreover, for
some small constant 𝛿𝑝 > 0:

∙ (PCPP Completeness) If 𝐹 (𝜏) = 1, then there is a proof 𝜋 such that
𝑉C-EVAL(𝐹 )𝜏∘𝜋 always accepts. Moreover, there is a polynomial-time algorithm
which computes 𝜋 given 𝐹 and 𝜏 .

1More precisely, 𝑉C-EVAL(𝐹 ) is a smooth PCPP for the Circuit-Eval problem, in which we have
fixed the circuit to be 𝐹 .
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∙ (PCPP Soundness) If 𝐹 (𝜏 ′) = 0 for every 𝜏 ′ ∈ {0, 1}𝑛 which differs from 𝜏 in at
most a 𝛿𝑝 fraction of entries, then Pr𝑢∈{0,1}𝑂(log𝑛) [𝑉C-EVAL(𝐹 )𝜏∘𝜋(𝑢) = 1] ≤ 1/3

for all possible proofs 𝜋 ∈ {0, 1}ℓproof .

The fact that the queries are both smooth and non-adaptive will be crucial to our
construction later on. This ‘proximity’ aspect of the soundness condition is necessary
for these properties to hold. For instance, if one fixed 𝐹 to be the parity function,
then it is not hard to see that such a construction without the ‘proximity’ aspect (i.e.
with 𝛿𝑝 = 0) is impossible. Our goal is to apply such a smooth PCPP to 𝐶, but since
we don’t have any guarantees about which inputs 𝐶 should reject, we will first need
to make some modifications to 𝐶 to deal with the ‘proximity’ aspect.

Defining 𝐷𝐶(𝜏) := 𝑉 (1𝑛)𝐶(𝜏), which is still a polynomial-size circuit, our goal is
to design a fast algorithm to estimate

𝑝acc(𝐶) := Pr
𝜏∈{0,1}ℓ

[𝑉 (1𝑛)𝐶(𝜏) = 1] = Pr
𝜏∈{0,1}ℓ

[𝐷𝐶(𝜏) = 1].

In preparation for using the PCP of proximity, we next apply an error correcting
code to 𝜏 . Specifically, fix a constant-rate F2-linear error correcting code ECC with
efficient encoder Enc : {0, 1}ℓ → {0, 1}𝑐1·ℓ and decoder Dec : {0, 1}𝑐1·ℓ → {0, 1}ℓ which
can recover error up to a 𝛿dec fraction. We define another circuit 𝐸𝐶 : {0, 1}𝑐1·ℓ →
{0, 1}, as 𝐸𝐶(𝑤) := 𝐷𝐶(Dec(𝑤)). That is, 𝐸𝐶 treats the input as a codeword of ECC,
decodes it, and feeds the result into the circuit 𝐷𝐶 . Now our goal is to estimate

𝑝acc(𝐶) = Pr
𝜏∈{0,1}ℓ

[𝐸𝐶(Enc(𝜏)) = 1].

Now we will apply the PCP of Proximity to simplify the estimation of 𝑝acc(𝐶).
More precisely, we use a 𝑞 = 𝑂(1) query smooth PCPP, 𝑉C-EVAL(𝐸𝐶), for the circuit
𝐸𝐶 , which has proximity parameter < 𝛿dec, proof length ℓproof = poly(SIZE(𝐸𝐶)) =
poly(𝑛), and number of random bits 𝑚 = 𝑂(log ℓproof) = 𝑂(log 𝑛). The crucial
observation here is that we have dealt with the ‘proximity’ aspect of the smooth
PCPP by using the error correcting code: if 𝐷𝐶(𝜏) = 0, then Enc(𝜏) is 𝛿dec-far from
any yes-inputs to 𝐸𝐶 . This is because, for any 𝑤 ∈ {0, 1}𝑐1·ℓ which is 𝛿dec-close to
Enc(𝜏), 𝑤 decodes to 𝜏 and 𝐸𝐶(𝑤) = 𝐷𝐶(𝜏) = 0.

Summarizing, so far we have the following:

∙ (PCPP Completeness) If 𝐷𝐶(𝜏) = 1, then there is a proof 𝜋 ∈ {0, 1}ℓproof such
that 𝑉C-EVAL(𝐸𝐶)Enc(𝜏)∘𝜋 always accepts. Moreover, given 𝐸𝐶 and 𝜏 , there is
a polynomial-time computable function 𝜋(𝐸𝐶 , 𝜏) ∈ {0, 1}ℓproof to compute the
proof 𝜋.

∙ (PCPP Soundness) If 𝐷𝐶(𝜏) = 0, then Pr𝑢∈{0,1}𝑚 [𝑉C-EVAL(𝐸𝐶)Enc(𝜏)∘𝜋(𝑢) = 1] ≤
1/3 for all possible proofs 𝜋 ∈ {0, 1}ℓproof .

The PNP Machine 𝑀rigid. Finally, we are ready to define our rigid matrix. It
will be the concatenation, over all 𝜏 ∈ {0, 1}ℓ, of the proof 𝜋(𝐸𝐶best

, 𝜏) from the
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PCPP Completeness condition above. More precisely, let 𝜋𝐶best
(𝜏, 𝑗) be the 𝑗-th bit of

𝜋(𝐸𝐶best
, 𝜏). Note that 𝜋𝐶best

is a Boolean function on 𝑛𝜋 := 𝑛+𝑂(log 𝑛) bits. Letting
𝑁 = 2𝑛𝜋/2, we define our PNP machine 𝑀rigid as the function which, on input 1𝑁 ,
outputs the truth-table of 𝜋𝐶best

, which we interpret as a matrix in {0, 1}𝑁×𝑁 . 𝑀rigid

runs in PNP since, similar to before, one can guess 𝐶best bit-by-bit and verify with the
NP oracle.

Again, assume toward a contradiction that R𝑀rigid(1𝑁 )(𝑟) ≤ 𝛿 · 𝑁2 for a small
constant 𝛿 (recall that one can think of 𝑟 := 2(log𝑁)1−𝜀 for a small constant 𝜀 > 0)
for all 𝑁 . That is, we know 𝜋𝐶best

(·, ·) can be (1 − 𝛿)-approximated by a matrix 𝑀
of rank at most 𝑟. We guess a low-rank decomposition of that matrix 𝑀 = 𝐴 ·𝐵, in
𝑂(𝑁 · 𝑟) time, and now we wish to estimate

𝑝acc(𝑀) := Pr
𝑢∈{0,1}𝑚,𝜏∈{0,1}ℓ

[𝑉C-EVAL(𝐸𝐶)Enc(𝜏)∘𝑀(𝜏,·)(𝑢) = 1].

Recall that 𝜏 is the randomness to the old PCP verifier 𝑉 , of length ℓ = 𝑛+𝑂(log 𝑛),
and 𝑢 is the randomness to the new smooth PCPP verifier 𝑉C-EVAL(𝐸𝐶), of length
𝑚 = 𝑂(log 𝑛).

Fast Algorithm for Computing 𝑝acc(𝑀). We now use the fact that the
queries made by 𝑉C-EVAL(𝐸𝐶) only depend on 𝑢. Our algorithm will simply iter-
ate over all poly(𝑛) choices of 𝑢. Hence, fix 𝑢 ∈ {0, 1}𝑚, and suppose 𝑉 queries
𝑀(𝜏, 𝑗1),𝑀(𝜏, 𝑗2), . . . ,𝑀(𝜏, 𝑗𝑞1) in 𝑀(𝜏, ·), and 𝑒1, 𝑒2, . . . , 𝑒𝑞2 in Enc(𝜏). Now we want
to estimate

Pr
𝜏∈{0,1}ℓ

[𝐹𝑢(𝑀(𝜏, 𝑗1),𝑀(𝜏, 𝑗2), . . . ,𝑀(𝜏, 𝑗𝑞1),Enc(𝜏)𝑒1 ,Enc(𝜏)𝑒2 , . . . ,Enc(𝜏)𝑒𝑞2 ) = 1]

for a Boolean function 𝐹𝑢 on 𝑞 = 𝑞1 + 𝑞2 = 𝑂(1) inputs. Next, using a standard
trick from the analysis of Boolean functions, we observe that since we are aiming to
compute the expected value of 𝐹𝑢, we can assume that 𝐹𝑢 is a parity function. In
other words, it is sufficient to quickly estimate

Pr
𝜏∈{0,1}ℓ

[𝑀(𝜏, 𝑗1)+𝑀(𝜏, 𝑗2)+ . . .+𝑀(𝜏, 𝑗𝑞1)+Enc(𝜏)𝑒1 +Enc(𝜏)𝑒2 + . . .+Enc(𝜏)𝑒𝑞2 = 1],

where the sum is taken mod 2. The parity of 𝑀(𝜏, 𝑗1) + 𝑀(𝜏, 𝑗2) + . . . + 𝑀(𝜏, 𝑗𝑞1),
which is a sum of a constant number of low-rank matrices, can itself be written as
a low rank matrix. Since Enc is a linear function over F2, incorporating Enc(𝜏)𝑒1 +
Enc(𝜏)𝑒2 + . . . + Enc(𝜏)𝑒𝑞2 , which is a linear function of the indices of the matrix,
can only increase the rank by an additive constant. Hence, our goal is exactly to
compute the number of 1s in a low rank matrix. This is an instance of the previously
discussed #SAT problem for low-rank matrices which, as discussed, can can be solved
in 𝑁2−Ω(1/ log 𝑟) time as described by [CW16].

Notice that:

∙ If 1𝑛 ∈ 𝐿, and we guessed the circuit 𝐶best and a matrix 𝑀 which (1 − 𝛿)-
approximates 𝜋𝐶best

, then 𝑝acc(𝑀) ≥ 1 − 𝑞 · 𝛿 since 𝑉C-EVAL(𝐸𝐶)’s queries are

186



smooth (meaning, uniformly distributed over the proof).

∙ If 1𝑛 /∈ 𝐿, then for all possibles guesses, 𝑝acc(𝑀) ≤ 1/2, by the soundness of
PCPP and PCP.

Putting everything together, it follows that 𝐿 is in non-deterministic time

poly(𝑛) ·𝑁2−Ω(1/ log 𝑟) = 2𝑛−Ω(𝑛/ log 𝑟) = 2𝑛−Ω(𝑛𝜀),

contradicting the non-deterministic time hierarchy. This completes the proof overview
for Theorem 11.3.

11.1.2 Unconditional Construction of Rigid Matrices

Getting Rid of the Easy-Witness Assumption: A Boot-Strapping Scheme.
We now move on to a proof overview of Theorem 11.1. Note that in the above
argument, the only consequence of NE ⊂ P/poly used is the fact that 𝑉 (1𝑛) has a
succinct witness circuit. In order to get rid of the assumption NE ⊂ P/poly, we next
show how to construct a succinct witness for 𝑉 (1𝑛) solely based on the assumption
that all PNP machines have non-rigid output matrices.

The key idea is based on a bootstrapping argument. Observe that an 𝑁 𝑜(1)-rank
decomposition of a matrix 𝑀 ∈ {0, 1}𝑁×𝑁 actually compresses the 𝑁2 bits of 𝑀 into
an 𝑁1+𝑜(1) bit representation. If we can further treat those bits after the compression
as a low-rank matrix, and compress it again, and so on, we can further reduce the
number of bits required to represent the matrix.

A key property of low-rank decompositions we will use is that they are locally
decodable. That is, if 𝐴,𝐵 are the two matrices of a rank-𝑟 expression for 𝑀 , then
one can compute a particular entry 𝑀𝑖,𝑗, by looking at only 𝑂(𝑟) entries of the
matrices 𝐴 and 𝐵 (the 𝑖th row of 𝐴 and the 𝑗th column of 𝐵).

High-Level Idea. Recall from the proof above that 𝑂𝑛 is the lexicographically
first oracle which makes 𝑉 (1𝑛) always accept. The high level idea for constructing
a succinct witness for 𝑂𝑛 is as follows. We first interpret 𝑂𝑛 as a matrix 𝑀1 ∈
{0, 1}𝑁1×𝑁1 . Letting (𝐴1, 𝐵1) be its low-rank decomposition, we then interpret the
concatenation (𝐴1, 𝐵1) as a matrix 𝑀2 ∈ {0, 1}𝑁2×𝑁2 . We will show that 𝑀2 also
has a low-rank decomposition (𝐴2, 𝐵2). We then interpret this as a matrix 𝑀3 ∈
{0, 1}𝑁3×𝑁3 , and repeat until we have a small enough matrix 𝑀𝑘 ∈ {0, 1}𝑁𝑘×𝑁𝑘 . Note
that for all 𝑖, we have 𝑁𝑖 = 𝑁

1/2+𝑜(1)
𝑖−1 ; that is, each time we compress the bits by

about a square-root.
Why do all these matrices have low-rank approximations? This follows from our

assumption that all PNP machines’ output matrices are non-rigid, and hence have low-
rank approximations. First, similar to before, we know that there is a PNP algorithm
𝑀 that, on input 1

√
|𝑂𝑛|, outputs 𝑂𝑛 = 𝑀1. Then, we can recursively show that

each of the matrices 𝑀2, . . . ,𝑀𝑘 can be constructed by an NP oracle machine: for
each 𝑖, to construct 𝑀𝑖, we use the oracle to find the lexicographically first low-rank
approximation of 𝑀𝑖−1.
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Our succinct witness for 𝑂𝑛 is 𝑀𝑘 for a large constant 𝑘. 𝑀𝑘 is small enough
that we can construct a circuit for it by brute-force. The idea is to then repeat-
edly use the local decoding scheme we discussed earlier to construct circuits for
𝑀𝑘−1,𝑀𝑘−2, . . . ,𝑀1, since each corresponds to a low-rank approximation of the next.
However, having a low-rank approximation of 𝑀𝑖 is not enough to recover 𝑀𝑖 exactly.
To circumvent this issue, we apply locally-decodable codes to the matrices. Indeed,
if our low-rank decomposition 𝐴𝑖 · 𝐵𝑖 gives a (1 − 𝛿)-approximation to the matrix
Enc(𝑀𝑖) (the encoding of 𝑀𝑖 using a suitable locally-decodable code), rather than to
𝑀𝑖, then we can use the local decoder to compute 𝑀𝑖 exactly.

Locally-Decodable Codes and the Actual Compression Scheme 𝑓𝑖(·). We
now give more details of the construction. We fix a locally-decodable code ECClocal,
with message length 𝑛1+𝜀enc (𝜀enc can be made an arbitrarily small constant), and a
polylog(𝑛)-time local decoder. Let the encoder be Enc : {0, 1}𝑛 → {0, 1}𝑛1+𝜀enc . The
local decoder implies that, for 𝑆 ∈ {0, 1}𝑛, if we have a 𝑇 -size circuit which approxi-
mates the string Enc(𝑆), then there is a polylog(𝑛) · 𝑇 -size circuit which computes 𝑆
exactly.

We now define two functions to describe how to go from a matrix to its low-
rank decomposition. First define the function rk(𝑁) = 2(log𝑁)𝑏 for a constant 𝑏 > 0.
Then, for a string 𝑆, define comp(𝑆) as follows: Let 𝑁 =

√︀
|𝑆| (we will pretend

here that |𝑆| is the square of an integer; in the real proof we use a slight padding to
make sure of this), and let 𝐴,𝐵 be two matrices in {0, 1}𝑁×rk(𝑁) and {0, 1}rk(𝑁)×𝑁 ,
respectively, such that 𝐴 ·𝐵 equals 𝑆 on the most possible positions (viewing 𝑆 as a
matrix in {0, 1}𝑁×𝑁). If there are multiple equally good options for 𝐴,𝐵, then pick
the lexicographically first one. We then define comp(𝑆) = 𝐴∘𝐵, as the concatenation
of matrices 𝐴 and 𝐵.

Next, we define a series of functions which recursively give compressions of a given
string 𝑆:

𝑓𝑖(𝑆) :=

{︃
Enc(𝑆) 𝑖 = 1,
Enc(comp(𝑓𝑖−1(𝑆))) 𝑖 ≥ 2.

Note that 𝐴 and 𝐵 (the outputs of comp(𝑆)) can be computed from 𝑆 in
TIME[poly(|𝑆|)]NP. Now, we set ℓ𝑛,𝑖 =

√︀
|𝑓𝑖(𝑂𝑛)|. We can then pick our NP oracle

machine to, on input 1ℓ𝑛,𝑖 , output the corresponding matrix for 𝑓𝑖(𝑂𝑛). (In the full
proof below we use some simple tricks to make sure the ℓ𝑛,𝑖’s are all distinct.) There-
fore, by assumption, we know that each 𝑓𝑖(𝑂𝑛) can be approximated by a rk(ℓ𝑛,𝑖)-rank
matrix.

Finally, we are ready to implement our bootstrapping. We know that, for a
parameter 𝑗, 𝑓𝑗(𝑂𝑛) has an ℓ𝑛,𝑗-size circuit which computes it exactly. Suppose we
have a 𝑇 -size circuit 𝐶𝑗 which (1−𝛿)-approximates 𝑓𝑗(𝑂𝑛). From this we can construct
a circuit 𝐶𝑗−1 which (1− 𝛿)-approximates 𝑓𝑗−1(𝑂𝑛) as follows:

∙ First, applying the local decoder for ECClocal, we can construct a polylog(ℓ𝑛,𝑗−1)·
𝑇 -size circuit 𝐶comp which exactly computes comp(𝑓𝑗−1(𝑂𝑛)).
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∙ Let 𝐴,𝐵 be the matrices corresponding to comp(𝑓𝑗−1(𝑂𝑛)). By our assumption,
𝐴 · 𝐵 is a (1− 𝛿)-approximation for 𝑓𝑗−1(𝑂𝑛). We know that (𝐴 · 𝐵)𝑥,𝑦 can be
computed in rk(ℓ𝑛,𝑗−1) time, given oracle access to 𝐶comp. It follows from the
locally-decodable property of ECClocal that we get a circuit of size rk(ℓ𝑛,𝑗−1) ·
polylog(ℓ𝑛,𝑗−1) · 𝑇 which approximates 𝑓𝑗−1(𝑂𝑛).

From this construction, we can show that 𝑓1(𝑂𝑛) = Enc(𝑂𝑛) can be approximated
by a small circuit, which in turn shows 𝑂𝑛 has a small exact circuit. It is not hard
to see, in particular, that

SIZE(𝑂𝑛) ≤
𝑗−1∏︁
𝑖=1

rk(ℓ𝑛,𝑗−1)
1+𝑜(1) · |ℓ𝑛,𝑗| = poly(rk(|𝑂𝑛|)) · |ℓ𝑛,𝑗| = 2𝑂(𝑛𝑏) · |ℓ𝑛,𝑗|.

The Constant 1/4− 𝜀. Supposing that 𝑂𝑛 has a 2𝑛𝑎-size witness, and the rank we
consider is rk(𝑁) = 2(log𝑁)𝑏 , the running time of our algorithm is

2𝑂(𝑛𝑎) · 2𝑛−Ω(𝑛1−𝑏) = 2𝑛+𝑂(𝑛𝑎)−Ω(𝑛1−𝑏).

In order to make the above faster than 2𝑛 and get a contradiction, we want to pick
𝑏 < 1− 𝑎. From the bound on SIZE(𝑂𝑛), we can see that the bootstrapping scheme
can only achieve 𝑎 > 𝑏. Therefore, we set 𝑎 = 1/2 + 𝜀 and 𝑏 = 1/2 − 2𝜀, for a small
constant 𝜀 > 0.

We now consider the running time of 𝑀comp. Since we only aim to compress 𝑂𝑛 to
a witness of size 2𝑂(𝑛𝑎), we can stop if we find ℓ𝑛,𝑗 ≤ 2𝑛𝑎 , as there is no need to further
compress. Let 𝑀 := ℓ𝑛,𝑗. On input 1𝑀 , 𝑀comp needs poly(ℓ𝑛,1) = 2𝑂(𝑛) ≤ 𝑀 log𝑀

time to compute 𝑓𝑖(𝑂𝑛). Therefore, 𝑀comp runs in TIME[𝑛log𝑛]NP, and hence yields a
rigid matrix constructible in TIME[𝑛log𝑛]NP for rank 2(log𝑁)1/2−2𝜀 . In other words, the
time is slower than we hoped for, but the rank is higher than we hoped for.

Finally, we use a tensor product argument (Lemma 11.5 below) to transform this
into a PNP construction, which is rigid for a worse rank of 2(log𝑁)1/4−𝜀 . The idea is to
take the tensor product of our rigid matrix with a large all-1s matrix. The resulting
matrix is still rigid for the same rank, but has larger dimensions. Equivalently, in
terms of the dimension 𝑁 of the matrix, the complexity to compute the matrix has
gone down, but it is also rigid for a lower rank.

11.2 Tools from Complexity Theory
Our construction of rigid matrices makes use of a number of tools from the complexity
theory literature; in this Section we precisely define the tools from prior work which
we will use.

The Circuit Evaluation Problem (Circuit-Eval) is the language of pairs (𝐶,𝑤) where
𝐶 is a general fan-in-2 circuit, and 𝑤 is an input such that 𝐶(𝑤) = 1. For two strings
𝑎, 𝑏, we use 𝑎 ∘ 𝑏 to denote their concatenation.2

2The symbol ∘ is also used for circuit composition; its meaning will always be clear from context.
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Probabilistic Checkable Proofs of Proximity

Our proof will make heavy use of probabilistically checkable proofs of proximity.

Definition 11.1 (Probabilistic Checkable Proofs of Proximity (PCP of proximity, or
PCPP)). For 𝑠, 𝛿 : N → [0, 1] and 𝑟, 𝑞 : N → N, a verifier 𝑉 is a PCP of proximity
system for a pair language 𝐿 with proximity parameter 𝛿, soundness parameter 𝑠,
number of random bits 𝑟 and query complexity 𝑞 if the following holds for all 𝑥, 𝑦:

∙ (Completeness) If (𝑥, 𝑦) ∈ 𝐿, then there is a proof 𝜋 such that 𝑉 (𝑥) accepts
oracle 𝑦 ∘ 𝜋 with probability 1.

∙ (Soundness) If 𝑦 is 𝛿(|𝑥|)-far from 𝐿(𝑥) := {𝑧 : (𝑥, 𝑧) ∈ 𝐿}, then for all proofs
𝜋, 𝑉 (𝑥) accepts oracle 𝑦 ∘ 𝜋 with probability at most 𝑠(|𝑥|).

∙ 𝑉 (𝑥) tosses 𝑟(|𝑥|) random coins, and makes at most 𝑞(|𝑥|) non-adaptive queries.

Lemma 11.1 ([BGH+06, Theorem 3.3]). For any constants 0 < 𝛿, 𝑠 < 1, there is a
PCP of proximity system for Circuit-Eval with proximity 𝛿, soundness 𝑠, number of
random bits 𝑟 = 𝑂(log 𝑛) and query complexity 𝑞 = 𝑂(1). Moreover, given the pair
(𝐶,𝑤) ∈ Circuit-Eval, a proof 𝜋 which makes 𝑉 (𝐶) always accept can be constructed
in poly(|𝐶|+ |𝑤|) time.

Remark 11.1. The last (‘Moreover’) sentence is not explicitly stated in [BGH+06],
but it is evident from their construction.

In this paper, we need a stronger PCPP construction which is additionally smooth,
meaning, every position in the proof 𝜋 is queried with equal probability (assuming
without loss of generality that all queries are non-adaptive and distinct). Such a
construction can be found in [Par19].3

Lemma 11.2 ([Par19]). For any constants 0 < 𝛿, 𝑠 < 1, there is a smooth PCP of
proximity system for Circuit-Eval with proximity 𝛿, soundness 𝑠, number of random
bits 𝑟 = 𝑂(log 𝑛) and query complexity 𝑞 = 𝑂(1). Moreover, given the pair (𝐶,𝑤) ∈
Circuit-Eval, a proof 𝜋 making 𝑉 (𝐶) always accepts can be constructed in poly(|𝐶| +
|𝑤|) time.

Error Correcting Codes

We also need standard constructions of two different types of codes: constant-rate
linear error correcting codes, and 𝑛𝜀-rate codes with polylog(𝑛) time local decoders.

Lemma 11.3 ([Spi96]). There is a constant-rate linear error correcting code ECC
with a linear-time encoder Enc and a linear-time decoder Dec recovering error up to
a universal constant 𝛿.

Lemma 11.4 (cf, Section 2.3 of [Yek12]). For any constant 𝜀 > 0, there is a 𝑛𝜀-rate
error correcting code ECC with a poly(𝑛)-time encoder Enc and a polylog(𝑛)-time
local-decoder Dec which recovers up to a 0.01 fraction of errors.

3[Par19]’s construction actually ensures that this holds for every query position in the second
input 𝑦 as well. This additional property is not required by our proof.
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A Simple Fact About Matrix Rigidity

We use 1𝑁 to denote the all-ones matrix of size 𝑁×𝑁 , and ⊗ to denote the Kronecker
product of matrices.

Lemma 11.5. For any field F and any matrix 𝐴 ∈ F𝑀×𝑀 , we have

R1𝑁⊗𝐴(𝑟) = R𝐴(𝑟) ·𝑁2.

Proof. We first show R1𝑁⊗𝐴(𝑟) ≥ R𝐴(𝑟) ·𝑁2. Assume to the contrary that there is a
way to change 𝑘 < R𝐴(𝑟)·𝑁2 entries of 1𝑁⊗𝐴 to make its rank 𝑟. The matrix 1𝑁⊗𝐴
consists of 𝑁2 disjoint copies of 𝐴, so by the pigeonhole principle, there were at most
𝑘/𝑁2 < R𝐴(𝑟) entries changed in one of those copies of 𝐴. Thus, that submatrix still
has rank greater than 𝑟 after the change, a contradiction.

We next show that R1𝑁⊗𝐴(𝑟) ≤ R𝐴(𝑟) · 𝑁2. Let 𝐵 a matrix of rank 𝑟 whose
Hamming distance from 𝐴 is R𝐴(𝑟). Thus, 1𝑁 ⊗𝐵 has rank rank(1𝑁) · rank(𝐵) = 𝑟,
and its Hamming distance from 1𝑁 ⊗ 𝐴 is R𝐴(𝑟) ·𝑁2.

F𝑝𝑟-#OV

One crucial component of our construction is the algorithm for F𝑝𝑟 -#OV from [CW16].

Definition 11.2. For a prime power 𝑞 = 𝑝𝑟, in an F𝑞-#OV𝑛,𝑑 instance, we are given
two collections of vectors from F𝑑

𝑞, 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} and 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑛}, and
want to compute the number of pairs such that ⟨𝑎𝑖, 𝑏𝑗⟩ = 0 over F𝑞.

We use the following algorithm for F𝑞-#OV𝑛,𝑑.

Theorem 11.4 ([CW16]). For all fixed prime powers 𝑞 = 𝑝𝑟, there is an
𝑛2−Ω(1/ log(𝑑/ log𝑛)) time deterministic algorithm for F𝑞-#OV𝑛,𝑑, when 𝑑 = 𝑛𝑜(1).

The original paper [CW16] only states an algorithm for #OV (the problem when 𝐴
and𝐵 are collections of vectors from {0, 1}𝑑 and the inner product is over Z). We make
two small modifications to their algorithm to get the result stated in Theorem 11.4
above; see Section 11.6 for details.

11.3 Construction of Rigid Matrices Assuming an
Easy Witness Lemma

We now move on to the formal construction and proof. We begin in this Section by
proving Theorem 11.2.

We say an algorithm is a matrix-constructing algorithm if on input 1𝑁 , it outputs
a matrix in {0, 1}𝑁×𝑁 . We say a function 𝑓 : N → N is a typical resource bound
function if it is strictly increasing, and satisfies 𝑓(𝑛) = 𝜔(𝑓(𝑛+ 1)/(𝑛+ 1)). We first
prove the following lemma, which says that if certain non-deterministic time classes
have easy witnesses, then there is a PNP construction of rigid matrices.
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Lemma 11.6. There is an absolute constant 𝛿 > 0 such that, for all prime powers 𝑞 =
𝑝𝑟, and any three typical resource bound functions 𝑇, 𝑆,𝑅 : N→ N with 𝑇 (𝑛), 𝑆(𝑛) ≥
𝑛 for all 𝑛, the following three conditions cannot hold simultaneously.

(1) All polynomial-time verifiers4 for unary NTIME[𝑇 (𝑛)] languages have 𝑆(𝑛)-size
witness circuits.

(2) For all PNP matrix-constructing algorithms 𝑀 , R𝑀(1𝑁 )(𝑅(𝑁)) ≤ 𝛿 ·𝑁2 for almost
all 𝑁 .

(3) log 𝑇 (𝑛)/ log𝑅(𝑁) = 𝜔(log log 𝑇 (𝑛) + log𝑆(𝑛)), where 𝑁 = 2𝑛𝜋/2, for 𝑛𝜋 =
log 𝑇 (𝑛) +𝑂(log log 𝑇 (𝑛)) +𝑂(log𝑆(𝑛)), and 𝑅(𝑁) = 𝑁 𝑜(1).

Remark 11.2. In the following proof, we will actually only need the first assumption
to hold for the special PCP verifier 𝑉 (1𝑛) of the language 𝐿 we consider. This remark
will be useful in the proof in the next Section.

Proof. Let 𝛿 > 0 be a constant to be decided later. We first only consider the case
when the field is F2, and then show how to generalize the argument for other finite
fields. We will assume that all three items are true, and derive a contradiction.

Unary Language 𝐿 and PCP. Let 𝐿 be a unary language in NTIME[𝑇 (𝑛)] ∖
NTIME[𝑇 (𝑛)/𝑛]. Using the non-deterministic time hierarchy theorem [Zák83], such an
𝐿 exists because 𝑇 (𝑛) is a typical resource function. Let 𝑉 be an efficient PCP verifier
for 𝐿 from [BV14]. That is, there is a function ℓ = ℓ(𝑛) = log 𝑇 (𝑛) +𝑂(log log 𝑇 (𝑛)),
such that 𝑉 (1𝑛) takes an oracle 𝑂 : {0, 1}ℓ → {0, 1} and ℓ random bits as input, runs
in poly(𝑛) time, and:

1. (PCP Completeness) If 1𝑛 ∈ 𝐿, then there exists a circuit 𝐶 : {0, 1}ℓ → {0, 1}
of size 𝑆(𝑛) such that Pr𝑟∈{0,1}ℓ [𝑉 (1𝑛)𝐶(𝑟) = 1] = 1. (This follows from the first
assumption of the Lemma.)

2. (PCP Soundness) If 1𝑛 ̸∈ 𝐿, then for all oracles 𝑂 : {0, 1}ℓ → {0, 1}, we have
Pr𝑟∈{0,1}ℓ [𝑉 (1𝑛)𝑂(𝑟) = 1] ≤ 1/𝑛.

We will next show how to put 𝐿 ∈ NTIME[𝑇 (𝑛)/𝑛] by using the second and the
third assumptions of the Lemma, which will give us the contradiction we want.

The Plan. Let 𝐶best be the circuit of size 𝑆(𝑛) such that Pr𝑟∈{0,1}ℓ [𝑉 (1𝑛)𝐶best(𝑟) =
1] = 1, and if there are multiple such circuits, we break the tie by choosing the
lexicographically first one. Note that such a circuit doesn’t exist when 1𝑛 /∈ 𝐿, and
in that case we set 𝐶best to be a trivial circuit which always outputs 0.

In our non-deterministic algorithm to solve 𝐿, given an input 1𝑛, we first guess a
circuit 𝐶 of size at most 𝑆(𝑛), and wish to ensure that the following two conditions
hold:

4That is, for 𝐿 ∈ NTIME[𝑇 (𝑛)], the verifier 𝑉 takes two inputs 𝑥, 𝑦 with |𝑥| = 𝑛 and |𝑦| =
poly(𝑇 (𝑛)), runs in poly(|𝑥|+ |𝑦|) time, and has the property that 𝑥 ∈ 𝐿 if and only if there is a 𝑦
such that 𝑉 (𝑥, 𝑦) = 1.
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1. When 1𝑛 ∈ 𝐿 and 𝐶 = 𝐶best, we accept, and

2. When 1𝑛 /∈ 𝐿, we always reject.

If our algorithm satisfies these two conditions and runs in 𝑇 (𝑛)/𝑛 non-deterministic
time, then we have put 𝐿 ∈ NTIME[𝑇 (𝑛)/𝑛] and arrived at the desired contradiction.

Implementation. Now suppose we have guessed a circuit 𝐶 of size at most 𝑆(𝑛).
Toward achieving the two conditions above, we want to estimate

𝑝acc(𝐶) := Pr
𝑟∈{0,1}ℓ

[𝑉 (1𝑛)𝐶(𝑟) = 1].

Define another circuit 𝐷𝐶 : {0, 1}ℓ → {0, 1} as 𝐷𝐶(𝑟) := 𝑉 (1𝑛)𝐶(𝑟). We thus
equivalently have that

𝑝acc(𝐶) = Pr
𝑟∈{0,1}ℓ

[(𝐷𝐶 , 𝑟) ∈ Circuit-Eval],

by the definition of Circuit-Eval.

Applying Error Correcting Codes. Fix an F2-linear error correcting code ECC
with rate 𝑐1 and recovering error 𝛿1, whose existence is guaranteed by Lemma 11.3.
Let Enc : {0, 1}ℓ → {0, 1}𝑐1·ℓ and Dec : {0, 1}𝑐1·ℓ → {0, 1}ℓ be the corresponding
linear-time encoder and decoder.

We now define yet another circuit 𝐸𝐶 : {0, 1}𝑐1·ℓ → {0, 1} as 𝐸𝐶(𝑤) :=
𝐷𝐶(Dec(𝑤)). Then it suffices to estimate

𝑝acc(𝐶) = Pr
𝑟∈{0,1}ℓ

[(𝐸𝐶 ,Enc(𝑟)) ∈ Circuit-Eval].

Notice that SIZE(𝐸𝐶) ≤ poly(𝑛) · 𝑆(𝑛), since the verifier 𝑉 (1𝑛) runs in poly(𝑛) time,
and the decoder Dec runs in linear time.

Applying the PCPP. Now we use a 𝑞PCPP = 𝑂(1)-query smooth PCPP for
Circuit-Eval from Lemma 11.2 with constant soundness 𝑠PCPP and proximity param-
eter 𝛿PCPP to be specified later. Let 𝑉C-EVAL(𝐸𝐶) be the verifier for this smooth
PCPP with the circuit fixed to 𝐸𝐶 . Hence, 𝑉C-EVAL(𝐸𝐶) uses proof length ℓproof =
poly(SIZE(𝐸𝐶)) = poly(𝑆(𝑛)) and 𝑚 = 𝑂(log ℓproof) random bits.

Claim 11.1. 𝑉C-EVAL(𝐸𝐶) satisfies the following three properties by setting 𝛿PCPP <
𝛿dec, and 𝑠PCPP = 1/3.

1. (PCPP Completeness) If (𝐷𝐶 , 𝑟) ∈ Circuit-Eval, there is a proof 𝜋 ∈ {0, 1}ℓproof
that

Pr
𝑢∈{0,1}𝑚

[𝑉C-EVAL(𝐸𝐶)Enc(𝑟)∘𝜋(𝑢)] = 1.
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2. (From PCPP Smoothness) Suppose (𝐷𝐶 , 𝑟) ∈ Circuit-Eval, and let 𝜋 be a proof
satisfying the previous property. If proof ̃︀𝜋 ∈ {0, 1}ℓproof is a (1−𝛿)-approximation
to 𝜋 for some 𝛿 ∈ [0, 1], then

Pr
𝑢∈{0,1}𝑚

[𝑉C-EVAL(𝐸𝐶)Enc(𝑟)∘̃︀𝜋(𝑢)] ≥ 1− 𝑞PCPP · 𝛿.

3. (PCPP Soundness) If (𝐷𝐶 , 𝑟) /∈ Circuit-Eval, then for all proofs 𝜋 ∈ {0, 1}ℓproof ,
we have

Pr
𝑢∈{0,1}𝑚

[𝑉C-EVAL(𝐸𝐶)Enc(𝑟)∘𝜋(𝑢)] ≤ 1/3.

Property (1) of Claim 11.1 follows from the completeness property of the PCPP
system, and property (2) follows from the smoothness of the PCPP system combined
with a simple union bound.

For property (3), note that if (𝐷𝐶 , 𝑟) /∈ Circuit-Eval, then Enc(𝑟) is 𝛿dec-far from
the set {𝑤 ∈ {0, 1}𝑐1·ℓ : (𝐸𝐶 , 𝑤) ∈ Circuit-Eval}. This is because for any string 𝑤 ∈
{0, 1}𝑐1·ℓ which is < 𝛿dec-close to Enc(𝑟), we know Dec(𝑤) = 𝑟 and hence (𝐸𝐶 , 𝑤) /∈
Circuit-Eval. Therefore, by setting 𝛿PCPP < 𝛿dec, and 𝑠PCPP = 1/3, property (3) follows
from the soundness of the PCPP system.

The Function 𝜋𝐶best
(𝑟, 𝑗). Note that by Lemma 11.2, there is a polynomial time

computable function 𝜋(𝐸𝐶 ,Enc(𝑟)) ∈ {0, 1}ℓproof , such that when (𝐸𝐶 ,Enc(𝑟)) ∈
Circuit-Eval, we have

Pr
𝑢∈{0,1}𝑚

[𝑉C-EVAL(𝐸𝐶)Enc(𝑟)∘𝜋(𝐸𝐶 ,Enc(𝑟))(𝑢)] = 1.

Define the Boolean function 𝜋𝐶(𝑟, 𝑗), for 𝑗 ∈ [ℓproof ], to be the 𝑗-th bit of 𝜋(𝐸𝐶 , 𝑟)
(suppose ℓproof is a power of 2 for simplicity).

The function 𝜋𝐶best
(𝑟, 𝑗) is computable in ENP, by using the following procedure.

First we show how to compute the circuit 𝐶best in ENP. We are given two inputs
𝑟, 𝑗 with length |𝑟| = ℓ and |𝑗| = log ℓproof = 𝑂(log𝑆(𝑛)). In 𝑂(2ℓ) time with an
NP oracle, we can first decide whether 𝑉 (1𝑛) always accepts a circuit of size at most
𝑆(𝑛). If not, then we just output a trivial circuit. If so, then we guess that circuit bit
by bit to construct the lexicographically first one, again using the NP oracle to check
each guess. In this way, we can compute 𝐶best in ENP. We can then construct the
circuit 𝐸𝐶best

from 𝐶best, and then (using the fact that 𝜋(𝐸𝐶 ,Enc(𝑟)) can be computed
in polynomial time) compute 𝜋𝐶best

(𝑟) and output its 𝑗-th bit. The whole procedure
runs in ENP.

The PNP Machine 𝑀rigid. Note that 𝜋𝐶best
has input length 𝑛𝜋 = ℓ + 𝑂(log𝑆(𝑛)).

We can thus construct a PNP machine 𝑀rigid such that, given an input 12𝑛𝜋/2 , it
outputs the truth-table of 𝜋𝐶best

as a matrix. Therefore, by the second assumption of
the Lemma, 𝜋𝐶best

as a matrix can be 𝛿-approximated by a matrix of rank 𝑅(2𝑛𝜋/2).
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Putting 𝐿 in NTIME[𝑇 (𝑛)/𝑛]. Finally, consider the following algorithm for solving
𝐿. We first guess a circuit 𝐶 of size 𝑆(𝑛), with the hope that it is 𝐶best. Then,
letting 𝑁 = 2𝑛𝜋/2, we guess a matrix 𝑀 : 𝑁 ×𝑁 of rank 𝑅(𝑁), with the hope that it
𝛿-approximates 𝜋𝐶best

. More specifically, we guess two matrices 𝑈, 𝑉 of size 𝑁 ×𝑅(𝑁)
and 𝑅(𝑁)×𝑁 , and set (implicitly, without explicitly computing it) 𝑀 = 𝑈𝑉 .

Now we try to calculate

𝑝acc(𝑀) := Pr
𝑟∈{0,1}ℓ,𝑢∈{0,1}𝑚

[𝑉C-EVAL(𝐸𝐶)Enc(𝑟)∘𝑀(𝑟)(𝑢) = 1].

Fix 𝑢, and suppose that for randomness 𝑢, the verifier 𝑉C-EVAL(𝐸𝐶) queries
𝑀(𝑟, 𝑗1),𝑀(𝑟, 𝑗2), . . . ,𝑀(𝑟, 𝑗𝑞1) in 𝑀(𝑟, ·), and 𝑒1, 𝑒2, . . . , 𝑒𝑞2 in Enc(𝑟) (note that
𝑉C-EVAL(𝐸𝐶)’s query positions only depend on the randomness 𝑢). Now we want
to estimate

Pr
𝑟∈{0,1}ℓ

[𝐹𝑢(𝑀(𝑟, 𝑗1),𝑀(𝑟, 𝑗2), . . . ,𝑀(𝑟, 𝑗𝑞1),Enc(𝑟)𝑒1 ,Enc(𝑟)𝑒2 , . . . ,Enc(𝑟)𝑒𝑞2 ) = 1]

for a Boolean function 𝐹𝑢 on 𝑞PCPP = 𝑞1 + 𝑞2 inputs. First, we can write 𝐹𝑢 in the
basis of XOR functions:

𝐹𝑢(𝑧1, 𝑧2, . . . , 𝑧𝑞PCPP) =
∑︁

𝑆⊆[𝑞PCPP]

𝛼𝑆 ·
⨁︁
𝑖∈𝑆

𝑧𝑖.

(Here, we consider the XOR function ⊕ to be outputting a {0, 1} value, and the
coefficients 𝛼𝑆 and the sum Σ are over R, not over F2.) Since our goal is to compute
the expected value of 𝐹𝑢, by linearity of expectation, it suffices to separately compute
the expected value of each of the (constant number of) parity functions. Therefore,
it suffices to consider the case when 𝐹𝑢 is just an XOR function.

Also, note that since ECC is a linear code, it follows that Enc(𝑟)𝑘 is an XOR
function on a subset of coordinates of 𝑟. Thus, if 𝑟 = 𝑎 ∘ 𝑏 where |𝑎| = 𝑛𝜋/2 and
|𝑏| = |𝑟| − |𝑎| (note that ℓ > 𝑛𝜋/2 by the third assumption of the Lemma), we have
Enc(𝑟)𝑒 = Enc𝐿(𝑎)𝑒 ⊕ Enc𝑅(𝑏)𝑒, where Enc𝐿(𝑎)𝑒 and Enc𝑅(𝑏)𝑒 are the corresponding
contributions of 𝑎 and 𝑏 to Enc(𝑟)𝑒.

Next, we define

𝐸𝐿(𝑎)𝑒 :=

{︃
(1, 0) if Enc𝐿(𝑎)𝑒 = 0,
(0, 1) if Enc𝐿(𝑎)𝑒 = 1,

and 𝐸𝑅(𝑏)𝑒 :=

{︃
(0, 1) if Enc𝐿(𝑏)𝑒 = 0,
(1, 0) if Enc𝐿(𝑏)𝑒 = 1.

It is easy to verify that ⟨𝐸𝐿(𝑎)𝑒, 𝐸𝑅(𝑏)𝑒⟩ = Enc𝐿(𝑎)𝑒 ⊕ Enc𝑅(𝑏)𝑒 = Enc(𝑟)𝑒.
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Constructing F2-#OV Instance. We can now simplify the quantity we want to
compute as

Pr
𝑎∈{0,1}𝑛𝜋/2,𝑏∈{0,1}ℓ−𝑛𝜋/2

[︃
𝑞1⨁︁
𝑖=1

⟨𝑈𝑎, 𝑉𝑏∘𝑗𝑖⟩ ⊕
𝑞2⨁︁
𝑖=1

⟨𝐸𝐿(𝑎)𝑒𝑖 , 𝐸𝑅(𝑏)𝑒𝑖⟩ = 1

]︃

= Pr
𝑎∈{0,1}𝑛𝜋/2,𝑏∈{0,1}ℓ−𝑛𝜋/2

[︂⟨
𝑞1

○
𝑖=1

𝑈𝑎 ∘
𝑞2

○
𝑖=1

𝐸𝐿(𝑎)𝑒𝑖 ∘ 1,
𝑞1

○
𝑖=1

𝑉𝑏∘𝑗𝑖 ∘
𝑞2

○
𝑖=1

𝐸𝑅(𝑏)𝑒𝑖 ∘ 1

⟩
= 0

]︂
.

In above, we use 𝑈𝑖 and 𝑉𝑗 to denote the 𝑖-th row of 𝑈 and 𝑗-th column of 𝑉
respectively, so that ⟨𝑈𝑖, 𝑉𝑗⟩ = 𝑀𝑖,𝑗. By duplicating each of the ‘𝑏’s 2𝑛𝜋−ℓ times, the
above can be reduced to a counting F2-#OV𝑁,𝑑 instance, with 𝑁 = 2𝑛𝜋/2 vectors of
𝑑 = 𝑂(𝑅(𝑁)) dimensions. By Theorem 11.4, this can be solved in time

𝑁2−Ω(1/ log 𝑑) = 𝑁2−Ω(1/ log𝑅(𝑁))

= 2𝑛𝜋−Ω(𝑛𝜋/ log𝑅(𝑁))

≤ 2log 𝑇 (𝑛)+𝑂(log log 𝑇 (𝑛))+𝑂(log𝑆(𝑛))−Ω(log 𝑇 (𝑛)/ log𝑅(𝑁)).
(𝑛𝜋 = ℓ+𝑂(log𝑆(𝑛)) = log 𝑇 (𝑛) + log log 𝑇 (𝑛) + 𝑆(𝑛))

Since we also need poly(𝑆(𝑛)) time for enumerating all possible 𝑢 ∈ {0, 1}𝑚, the
overall running time for calculating 𝑝acc(𝑀) is

2log 𝑇 (𝑛)+𝑂(log log 𝑇 (𝑛))+𝑂(log𝑆(𝑛))−Ω(log 𝑇 (𝑛)/ log𝑅(𝑁)).

By our third assumption, we know the above running time is≤ 2log 𝑇 (𝑛)−𝜔(log𝑆(𝑛)) ≤
𝑇 (𝑛)/𝑛, since 𝑆(𝑛) ≥ 𝑛.

Analysis of the Algorithm. Consider first when 1𝑛 ∈ 𝐿. We know that on the
correct guess of 𝐶 = 𝐶best and the appropriate 𝑀 ≈ 𝜋𝐶best

, we have that 𝑀 (1 − 𝛿)-
approximates 𝜋𝐶best

. That is, for a random 𝑟 ∈ {0, 1}ℓ, the average relative distance
between 𝑀(𝑟, ·) and 𝜋𝐶best

(𝑟, ·) is at most 𝛿. Hence, by Property (2) of Claim 11.1
and by linearity of expectation, we know that 𝑝acc(𝑀) > 1− 𝑞PCPP · 𝛿 in this case.

Otherwise, if 1𝑛 ̸∈ 𝐿, then for every guess of 𝐶 and 𝑀 , by the soundness property
of PCP, we know that

Pr
𝑟∈{0,1}ℓ

[(𝐷𝐶 , 𝑟) ∈ Circuit-Eval] ≤ 1/𝑛.

Then by Property (3) of Claim 11.1, we have that

𝑝acc(𝑀) ≤ 1/𝑛+ 1/3 ≤ 1/2.

Therefore, when we set 𝛿 to be small enough so that 1−𝑞PCPP ·𝛿 > 1/2, we can dis-
tinguish the above two cases. By the above argument, this puts 𝐿 ∈ NTIME[𝑇 (𝑛)/𝑛],
a contradiction.
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Adaptation for the field F𝑞. Let 𝑞 = 𝑝𝑟 be a prime power. In the following, we
sketch the adaptation to deal with F𝑞. The only thing we need to modify is how to
reduce the computation of 𝑝acc(𝑀) to F𝑞-#OV. Again, we guess a rank 𝑅(𝑁) matrix
𝑀 = 𝑈𝑉 over F𝑞, and we want to calculate

Pr
𝑟∈{0,1}ℓ

[𝐹𝑢(𝑀(𝑟, 𝑗1)
𝑞−1, . . . ,𝑀(𝑟, 𝑗𝑞1)

𝑞−1,Enc(𝑟)𝑒1 , . . . ,Enc(𝑟)𝑒𝑞2 ) = 1]

for a Boolean function 𝐹𝑢 on 𝑞PCPP = 𝑞1 + 𝑞2 inputs. Note that in the above, we raise
all the 𝑀(𝑟,𝑗𝑖) inputs to the (𝑞 − 1)-th power to make them Boolean. Now, we can
write 𝐹𝑢 as a real sum of 2𝑞PCPP AND functions, each one for a subset of the inputs of
𝐹𝑢. Hence, like before, it suffices to consider the case when 𝐹𝑢 is an AND function,
and in this case we want to calculate

Pr
𝑟∈{0,1}ℓ

[︃
𝑞1∏︁
𝑖=1

𝑀(𝑟, 𝑗𝑖)
𝑞−1 ·

𝑞2∏︁
𝑖=1

Enc(𝑟)𝑒𝑖 = 1

]︃
,

which is equivalent to

Pr
𝑎∈{0,1}𝑛𝜋/2

Pr
𝑏∈{0,1}ℓ−𝑛𝜋/2

[︃
𝑞1∏︁
𝑖=1

⟨𝑈𝑎, 𝑉𝑏∘𝑗𝑖⟩𝑞−1 ·
𝑞2∏︁
𝑖=1

⟨𝐸𝐿(𝑎)𝑒𝑖 , 𝐸𝑅(𝑏)𝑒𝑖⟩ = 1

]︃
= Pr

𝑎∈{0,1}𝑛𝜋/2
Pr

𝑏∈{0,1}ℓ−𝑛𝜋/2
[⟨Φ𝑎,Ψ𝑏⟩ = 0] ,

where

Φ𝑎 :=

(︃
𝑞1⨂︁
𝑖=1

𝑈⊗(𝑞−1)
𝑎 ⊗

𝑞2⨂︁
𝑖=1

𝐸𝐿(𝑎)𝑒𝑖

)︃
∘ 1

and

Ψ𝑏 :=

(︃
𝑞1⨂︁
𝑖=1

𝑉𝑏∘𝑗𝑖 ⊗
𝑞2⨂︁
𝑖=1

𝐸𝑅(𝑏)𝑒𝑖

)︃
∘ −1

The final equality follows from the fact that for vectors 𝑎1, 𝑏1, 𝑎2, 𝑏2, we always
have ⟨𝑎1, 𝑏1⟩ · ⟨𝑎2, 𝑏2⟩ = ⟨𝑎1 ⊗ 𝑎2, 𝑏1 ⊗ 𝑏2⟩. Finally, the above can be reduced to an
F𝑞-#OV instance with 2𝑛𝜋/2 vectors of 𝑅(𝑁)𝑂(1) dimensions. One can see that this
polynomial blowup in the dimension is acceptable, and we can still proceed as in the
case of F2.

Now we are ready to prove Theorem 11.2 (restated below). Notice that here we
use the stronger condition NQP ̸⊂ P/poly instead of NE ̸⊂ P/poly.
Reminder of Theorem 11.2 There is an absolute constant 𝛿 > 0 such that, for all
prime powers 𝑞 = 𝑝𝑟 and all 𝜀 > 0 at least one of the following holds:

∙ NQP ̸⊂ P/poly.

∙ There is a PNP machine 𝑀 such that, for infinitely many 𝑁 ’s, on input 1𝑁 , 𝑀
outputs an 𝑁 ×𝑁 matrix 𝐻𝑁 ∈ {0, 1}𝑁×𝑁 such that R𝐻𝑁

(2(log𝑁)1−𝜀
) ≥ 𝛿 ·𝑁2

over F𝑞.
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Proof of Theorem 11.2. Let 𝛿 > 0 be a constant to be chosen later.
Assume that NQP ⊂ P/poly. By [MW18], this in particular implies that for a

constant 𝑏 to be specified later and 𝑇 (𝑛) := 2log𝑏 𝑛, all polynomial-time verifiers for
unary languages in NTIME[2log𝑏 𝑛] have 𝑆(𝑛) := 𝑛𝑘-size witness circuits, for a constant
𝑘 = 𝑘(𝑏).

Set 𝑅(𝑁) := 2(log𝑁)1−𝜀 . We will now apply Lemma 11.6 with 𝑅, 𝑆, 𝑇 as above.
Note that 𝑛𝜋 = log 𝑇 (𝑛) + 𝑂(log log 𝑇 (𝑛)) + 𝑂(log𝑆(𝑛)) = log𝑏 𝑛 + 𝑂(log 𝑛) and
𝑁 = 2𝑛𝜋/2 = 2log𝑏 𝑛/2+𝑂(log𝑛). We thus calculate that

log 𝑇 (𝑛)/ log𝑅(𝑁) ≥ log𝑏 𝑛/ log𝑏(1−𝜀) 𝑛

≥ log𝑏·𝜀 𝑛

= 𝜔(log 𝑛)

= 𝜔(log log 𝑇 (𝑛) + log𝑆(𝑛)),

if we set 𝑏 > 2/𝜀.
Therefore, since Conditions (1) and (3) of Lemma 11.6 hold, we conclude that

Condition (2) of Lemma 11.6 does not hold, and this completes the proof. �

11.4 Unconditional Construction of Rigid Matrices

In this Section, we prove Theorem 11.1, giving our main construction of rigid matrices,
by using an additional bootstrapping argument.

For an integer 𝑛 ∈ N, we write 𝑛[𝑘] to denote the smallest integer 𝑚 ≥ 𝑛 such that
𝑚 ≡ 2𝑘 − 1 (mod 2𝑘+1). Notice that 𝑛[𝑘] satisfies |𝑛− 𝑛[𝑘]| ≤ 2𝑘+1. Moreover, for all
integers 𝑛,𝑚, 𝑖, 𝑗 ∈ N with 𝑖 ̸= 𝑗, we have that 𝑛[𝑖] ̸= 𝑚[𝑗].

We first prove the following lemma, which gives an (unconditional) construction
of a matrix which is rigid for a higher rank than the construction in Theorem 11.1,
but with a slower construction time of TIME[𝑛log𝑛]NP.

Lemma 11.7. There is an absolute constant 𝛿 > 0 such for all prime powers 𝑞 = 𝑝𝑟

and all constants 𝜀 > 0:

∙ There is a TIME[𝑛log𝑛]NP machine 𝑀 such that, for infinitely many 𝑁 ’s,
on input 1𝑁 , 𝑀 outputs an 𝑁 × 𝑁 matrix 𝐻𝑁 ∈ {0, 1}𝑁×𝑁 such that
R𝐻𝑁

(2(log𝑁)1/2−𝜀
) ≥ 𝛿 ·𝑁2 over F𝑞.

Proof. Let 𝛿 be a constant to be specified later. For simplicity, we only consider the
finite field F2 in the following. It is not hard to see that our proof also works for all
finite fields F𝑝𝑟 with a straightforward modification.

Assume toward a contradiction that for all TIME[𝑛log𝑛]NP machines 𝑀 , and for
almost all input lengths 𝑁 , the output matrix 𝐻𝑁 ∈ {0, 1}𝑁×𝑁 of 𝑀 satisfies
R𝐻𝑁

(2(log𝑁)1/2−𝜀
) < 𝛿 · 𝑁2. (By padding with zeros or only keeping the first 𝑁2

output bits, we can always assume that 𝑀 outputs exactly 𝑁2 bits on inputs of
length 𝑁 .)
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Notation. Throughout the proof, we will often identify a matrix from {0, 1}𝑁×𝑁

with a string from {0, 1}𝑁2 (reading the matrix from top row to bottom row, and
from leftmost column to rightmost column to construct the corresponding string).

Define the functions rk(𝑁) := 2(log𝑁)1/2−𝜀 and ℓcomp(𝑁) := 2 ·
√
𝑁 · rk(

√
𝑁).

Set 𝜀enc = 0.01, and ℓenc(𝑁) := 𝑁1+𝜀enc . Define the function ℓPCP(𝑁) := 𝑁 ·
log𝐶PCP 𝑁 for a constant 𝐶PCP to be specified later.

Applying Lemma 11.4, we fix a locally-decodable error correcting code ECClocal

with a poly(𝑁)-time encoder Enc : {0, 1}𝑁 → {0, 1}ℓenc(𝑁), which has a (log𝑁)𝐶enc-
time randomized decoder that decodes any position with probability at least 0.99
when given oracle access to a codeword which is corrupted in less than a 0.01 fraction
of its entries.

The Compression Scheme 𝑓𝑖(·). Now, given a string 𝑆 ∈ {0, 1}𝑁 , we define the
function comp(𝑆) as follows. Let 𝑁 ′ be the smallest square number ≥ 𝑁 and let
𝐴,𝐵 ∈ {0, 1}

√
𝑁 ′×rk(

√
𝑁 ′) be the two matrices such that 𝑆 ∘ 0𝑁 ′−𝑁 (interpreted as a

{0, 1}
√
𝑁 ′×

√
𝑁 ′ matrix) agrees with 𝐴𝐵𝑇 (over F2) on the greatest number of positions.

In case of a tie, make the choice resulting in 𝐴∘𝐵 being the lexicographically earliest
string. We define comp(𝑆) := 𝐴 ∘𝐵.

Given a string 𝑆 ∈ {0, 1}𝑁 , we further define the sequence of functions 𝑓1(𝑆) :=
Enc(𝑆) and 𝑓𝑖(𝑆) := Enc(comp(𝑓𝑖−1(𝑆))) for 𝑖 > 1.

We now aim to apply Lemma 11.6 from the previous section. Fix a unary language
𝐿 ∈ NTIME[2𝑛] such that 𝐿 /∈ NTIME[2𝑛/𝑛] [Zák83]. Fix an efficient PCP verifier 𝑉
for 𝐿 from [BV14], such that 𝑉 (1𝑛) takes log ℓPCP(2𝑛) random bits and oracle access
to a string of length ℓPCP(2𝑛). In order to apply Lemma 11.6, we need to show 𝑉 (1𝑛)
has small witness circuits.

The Construction of the TIME[𝑛log𝑛]NP Machine 𝑀comp: A Bootstrapping
Argument. Let 𝑂𝑛 ∈ {0, 1}ℓPCP(2

𝑛) be the lexicographically first string which makes
𝑉 (1𝑛) always accept, if such a string exists, and 0ℓPCP(2

𝑛) otherwise.
Our TIME[𝑛log𝑛]NP machine 𝑀comp works as follows. For 𝑛 and 1 ≤ 𝑖 ≤ 2/3 · log 𝑛,

let ℓ𝑛,𝑖 :=
⌈︁√︀
|𝑓𝑖(𝑂𝑛)|

⌉︁
[𝑖]

. If ℓ𝑛,𝑖 ≥ 2𝑛1/2+𝜀1 for a constant 𝜀1 to be specified later, then

𝑀comp on input 1ℓ𝑛,𝑖 computes 𝑓𝑖(𝑂𝑛), padded with ℓ2𝑛,𝑖− |𝑓𝑖(𝑂𝑛)| zeros. Otherwise it
outputs an all-zero matrix.

We first claim that 𝑀comp is well-defined, meaning there exists a constant 𝑁0 such
that for all 𝑛 ≥ 𝑁0 and 1 ≤ 𝑖 ≤ 2/3 log 𝑛, the ℓ𝑛,𝑖’s are distinct. To prove this, it
suffices to show that ℓ𝑛,𝑖 < ℓ𝑚,𝑖 whenever 𝑖 ≤ 2/3 log 𝑛 and 𝑛 < 𝑚, but this follows
from the definitions of the function 𝑓𝑖(·)’s.

Next, we note that 𝑀comp indeed runs in TIME[𝑛log𝑛]NP: on input 1ℓ𝑛,𝑖 of length
𝑚 = ℓ𝑛,𝑖 ≥ 2𝑛1/2+𝜀1 , the algorithm runs in time poly(ℓ𝑛,1) = 2𝑂(𝑛) ≤ 𝑚log𝑚.

𝑉 (1𝑛) Has Succinct Witness. We first show from our assumption (that
TIME[𝑛log𝑛]NP does not have rigid matrices) that 𝑉 (1𝑛) has a succinct witness circuit
if there is an oracle which always satisfies it.
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When this is the case, notice that for all 1 ≤ 𝑖 ≤ 2/3 log 𝑛, the output of
𝑀comp(1

ℓ𝑛,𝑖) can be 𝛿-approximated by a matrix of rank rk(ℓ𝑛,𝑖). We can calculate
that ℓ𝑛,2/3 log𝑛 < 2𝑛1/2 ; let 𝑗 be the largest integer such that ℓ𝑛,𝑗 ≥ 2𝑛1/2+𝜀1 , and note
that ℓ𝑛,𝑗 ≤ 23𝑛1/2+𝜀1 . Hence, 𝑀comp(1

ℓ𝑛,𝑗) can be implemented as a circuit of size
2𝑂(𝑛1/2+𝜀1 ).

Next, if there is a size-𝑆 circuit which (1 − 𝛿)-approximates 𝑀comp(1
ℓ𝑛,𝑖), then

𝑀comp(1
ℓ𝑛,𝑖−1) can be (1 − 𝛿)-approximated by a rk(ℓ𝑛,𝑖−1) · poly(𝑛) · 𝑆 size circuit

by using the local decoder of the corresponding locally decodable codes. Therefore,
𝑀comp(1

ℓ𝑛,1) can be (1− 𝛿)-approximated by a circuit of size

𝑗−1∏︁
𝑖=1

rk(ℓ𝑛,𝑖) · 𝑛𝑂(log𝑛) · 2𝑂(𝑛1/2+𝜀1 ) = 2𝑂(𝑛1/2+𝜀1 ).

Since 𝑀comp(1
ℓ𝑛,1) = Enc(𝑂𝑛), it follows that 𝑂𝑛 can be computed exactly by a

2𝑂(𝑛1/2+𝜀1 )-size circuit.

Applying Lemma 11.6. Toward applying Lemma 11.6, we set 𝑇 (𝑛) = 2𝑛, 𝑆(𝑛) =

2𝑂(𝑛1/2+𝜀1 ) and 𝑅(𝑁) = 2(log𝑁)1/2−𝜀 , where 𝜀1 := 𝜀/2 > 0. The two parameters in
Condition (3) of Lemma 11.6 are bounded by 𝑛𝜋 = log 𝑇 (𝑛) + 𝑂(log log 𝑇 (𝑛)) +

𝑂(log𝑆(𝑛)) = 𝑛+𝑂(𝑛1/2+𝜀1) and 𝑁 = 2𝑛/2+𝑂(𝑛1/2+𝜀1 ). We thus calculate that

log 𝑇 (𝑛)/ log𝑅(𝑁) = Ω(𝑛/𝑛1/2−𝜀) = 𝜔(𝑛1/2+𝜀1) = 𝜔(log log 𝑇 (𝑛) + log𝑆(𝑛)).

Therefore, Conditions (1) and (3) of Lemma 11.6 are satisfied, and it follows that
Condition (2) must be violated, which completes the proof.

Finally, we prove Theorem 11.1 (restated below) by using a simple padding argu-
ment.
Reminder of Theorem 11.1 There is an absolute constant 𝛿 > 0 such for all prime
powers 𝑞 = 𝑝𝑟 and all constants 𝜀 > 0:

∙ There is a PNP machine 𝑀 such that, for infinitely many 𝑁 ’s, on input 1𝑁 , 𝑀
outputs an 𝑁 ×𝑁 matrix 𝐻𝑁 ∈ {0, 1}𝑁×𝑁 such that R𝐻𝑁

(2(log𝑁)1/4−𝜀
) ≥ 𝛿 ·𝑁2

over F𝑞.

Proof of Theorem 11.1. We have shown, from Lemma 11.7, that there is an
absolute constant 𝛿 > 0 such that for all constants 𝜀 > 0:

∙ There is a TIME[𝑛log𝑛]NP machine 𝑀 such that, for infinitely many 𝑁s, on input
1𝑁 , 𝑀 outputs an 𝑁×𝑁 matrix 𝐻𝑁 ∈ {0, 1}𝑁×𝑁 such that R𝐻𝑁

(2(log𝑁)1/2−𝜀
) ≥

𝛿 ·𝑁2 over F2.

Let 𝑁 ′ = 𝑁 log𝑁 , and consider the PNP machine 𝑀 ′ which, given an input 1𝑁 ′ ,
outputs a matrix 𝐻 ′

𝑁 ′ := 1𝑁 log𝑁−1 ⊗𝐻𝑁 . By Lemma 11.5, we have

R𝐻′
𝑁′ (2

(log𝑁)1/2−𝜀

) ≥ 𝛿 ·𝑁 ′2
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for infinitely many 𝑁 ′. This rigidity bound is equivalent to

R𝐻′
𝑁′ (2

(log𝑁 ′)1/4−𝜀/2

) ≥ 𝛿 ·𝑁 ′2,

as desired. �

11.5 Applications

Rigid matrices are known to have applications in many areas of complexity theory.
In this section, we give three applications of our construction, to communication
complexity, arithmetic circuit complexity, and Boolean circuit complexity.

11.5.1 PHcc Communication Lower Bound

In this Section we apply our construction of rigid matrices to prove a PHcc commu-
nication lower bound for functions in TIME

[︀
2(log𝑛)𝜔(1)]︀NP. Our main tool will be a

known connection between rigid matrices and PHcc:

Lemma 11.8 ([Raz89], see also [Wun12]). Letting 𝑓 be a function in PHcc, the 2𝑛×2𝑛

communication matrix 𝑀𝑓 of 𝑓 has R𝑀𝑓
(2(log𝑛/𝜀)𝑐) ≤ 𝜖 · 4𝑛 over F2, where 𝜀 > 0 is

arbitrary and 𝑐 > 0 is a constant depending only on 𝑓 , but not 𝑛.

We will also use the following simple Lemma.

Lemma 11.9. For any field F and any matrix 𝐴 ∈ F𝑁×𝑁 , and for 𝑀 > 𝑁 , define
𝑃𝐴,𝑀 ∈ F𝑀×𝑀 to be the matrix such that the top-left 𝑁 ×𝑁 sub-matrix is 𝐴, and the
rest of entries are all zeros. For all 𝑟, we have

R𝑃𝐴,𝑀
(𝑟) ≥ R𝐴(𝑟).

Theorem 11.5. For all functions 𝛼(𝑛) = 𝜔(1) such that 𝑛𝛼(𝑛) is time-constructible,
there is a function 𝑓 ∈ TIME[2(log𝑛)𝛼(𝑛)

]NP which is not in PHcc.

Proof. By Theorem 11.1, we know that there is a PNP machine 𝑀 such that
R𝑀(1𝑁 )(2

(log𝑁)1/5) ≥ 𝛿 ·𝑁2 over F2, for a constant 𝛿 > 0 and infinitely many 𝑁 ’s. For
simplicity, we can assume 𝛼(𝑛) ≤ log 𝑛 (e.g., by setting 𝛼′(𝑛) = min(𝛼(𝑛), log 𝑛)).

The Definition of 𝑓 . Now we define a function 𝑓 ∈ TIME[2(log𝑛)𝛼(𝑛)
]NP as follows:

∙ Given as input 𝑥 ∈ {0, 1}𝑛, the function 𝑓 outputs zero immediately if 4 does
not divide 𝑛. Otherwise let 𝑚 = 𝑛/4.

∙ It treats the first 2𝑚 bits of the input as an integer 𝑁 in [22𝑚], and if 𝑁 >

2(log𝑚)𝛼(𝑛) , it outputs zero.
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∙ Otherwise, it constructs the matrix 𝐻 = 𝑀(1𝑁). Let 𝑆 = 2𝑚, and 𝑄 =
𝑃1⌊𝑆/𝑁⌋⊗𝐻,𝑆. It treats the next 2𝑚 bits of the input as a pair of integers (𝑖, 𝑗) ∈
[𝑆]× [𝑆], and outputs 𝑄𝑖,𝑗.

𝑄𝑖,𝑗 can be computed easily given 𝐻, so 𝑓 can be computed in TIME[2(log𝑛)𝛼(𝑛)
]NP.

𝑓 is not in in PHcc. We will now show that 𝑓 , when interpreted as a communication
problem, is not in PHcc. We distribute the input bits of 𝑓 among the two players as
follows: When 4 divides 𝑛, setting 𝑚 = 𝑛/4, then Alice holds the bits 𝑥1, 𝑥2, . . . , 𝑥𝑚
and 𝑥2𝑚+1,...,3𝑚, and Bob holds the bits 𝑥𝑚+1, 𝑥𝑚+2, . . . , 𝑥2𝑚 and 𝑥3𝑚+1,3𝑚+2,...,4𝑚.

Assume to the contrary that 𝑓 ∈ PHcc. This means that for all assignments 𝛼
to 𝑥1, 𝑥2, . . . , 𝑥2𝑚, the restricted function 𝑓𝛼 : {0, 1}𝑚 × {0, 1}𝑚 → {0, 1} is still in
PHcc. That is, there exists a constant 𝑐, such that for all 𝑁 ≤ 2(log𝑚)𝛼(𝑛) , 𝑆 = 2𝑚,
and 𝑄 = 𝑃1⌊𝑆/𝑁⌋⊗𝑀(1𝑁 ),𝑆, we have

R𝑄(2(log𝑚)𝑐) ≤ 𝛿/2 · 𝑆2.

By Lemma 11.9, this implies

R1⌊𝑆/𝑁⌋⊗𝑀(1𝑁 )(2
(log𝑚)𝑐) ≤ 𝛿/2 · 𝑆2 ≤ 𝛿 · 2/3 · (⌊𝑆/𝑁⌋ ·𝑁)2.

By Lemma 11.5, this further implies

R𝑀(1𝑁 )(2
(log𝑚)𝑐) ≤ 2/3 · 𝛿 ·𝑁2.

Now, let 𝑁 be a sufficiently large integer such that

R𝑀(1𝑁 )(2
(log𝑁)1/5) ≥ 𝛿 ·𝑁2.

Let 𝑚 be the smallest integer such that 2(log𝑚)𝛼(4𝑚) ≥ 𝑁 . Since 𝛼(𝑛) is unbounded,
we can pick 𝑁 to be large enough such that 𝛼(4𝑚− 4) ≥ 20 · 𝑐. By definition of 𝑚,
we have 2(log(𝑚−1))𝛼(4𝑚−4)

< 𝑁 , meaning 2(log(𝑚−1))20𝑐 < 𝑁 , and so 2(log𝑚)10𝑐 < 𝑁 . But
then by the above discussion, we have

R𝑀(1𝑁 )(2
(log𝑁)1/10) ≤ 2/3 · 𝛿 ·𝑁2,

a contradiction.

11.5.2 Depth-2 Arithmetic Circuit Lower Bound

In this section we prove Theorem 11.6 (restated below). Recall first the definition of
𝑤2:

Definition 11.3. For a field F and a matrix 𝐴 ∈ F𝑁×𝑁 , let

𝑤2(𝐴) := min{nnz(𝐵) + nnz(𝐶) | 𝐴 = 𝐵𝐶},
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where the min is over all pairs 𝐵,𝐶 of matrices of any dimensions over F whose
product is 𝐴, and nnz(𝑋) denotes the number of nonzero entries in the matrix 𝑋.

Theorem 11.6. For all prime powers 𝑞 = 𝑝𝑟 and constants 𝜀 > 0:

∙ There is a PNP machine 𝑀 such that, for infinitely many 𝑁 , on input 1𝑁 , 𝑀
outputs an 𝑁×𝑁 matrix 𝐻𝑁 ∈ {0, 1}𝑁×𝑁 such that 𝑤2(𝐻𝑁) ≥ Ω(𝑁 ·2(log𝑁)1/4−𝜀

)
over F𝑞.

We first prove the following folklore lemma.

Lemma 11.10. For any field F, and any matrix 𝐴 ∈ F𝑁×𝑁 , let 𝑟 = 𝑤2(𝐴)/𝑁 . Then,
for any constant 𝛿 > 0, we have

R𝐴(𝜌𝛿 · 𝑟2) ≤ 𝛿 ·𝑁2,

for some constant 𝜌𝛿 depending only on 𝛿.

In other words, if R𝐴(𝜌𝛿 · 𝑟2) > 𝛿 ·𝑁2, then we have 𝑤2(𝐴) ≥ 𝑟 ·𝑁 .

Proof. For some integer 𝑀 , let 𝐵 and 𝐶 be matrices over F of dimensions 𝑁 ×𝑀
and 𝑀 × 𝑁 , respectively, such that 𝐴 = 𝐵𝐶 and nnz(𝐵) + nnz(𝐶) = 𝑟 · 𝑁 . For
𝑖, 𝑗 ∈ [𝑁 ], let 𝑏𝑖 ∈ F𝑀 be the 𝑖-th row of 𝐵, and 𝑐𝑗 ∈ 𝐹𝑀 be the 𝑗-th column of 𝐶.
Hence, 𝐴𝑖,𝑗 = ⟨𝑏𝑖, 𝑐𝑗⟩.

Now, let 𝜌𝛿 be a function of 𝛿 to be specified later, and set 𝑚 = 𝜌𝛿 · 𝑟2. Pick a
hash function 𝑃 : [𝑀 ] → [𝑚] uniformly at random. Next, for each 𝑏𝑖, we define a
vector ̃︀𝑏𝑖 by setting, for each 𝑗 ∈ [𝑚]:

(̃︀𝑏𝑖)𝑗 :=
∑︁

𝑘∈𝑃−1(𝑗)

(𝑏𝑖)𝑘.

We similarly define ̃︀𝑐𝑗. Now, let ̃︀𝐵 be the 𝑁 × 𝑚 matrix with the ̃︀𝑏𝑖’s as rows,
and ̃︀𝐶 be the 𝑚 × 𝑁 matrix with the ̃︀𝑐𝑗’s as columns. We will now argue that ̃︀𝐵 ̃︀𝐶
approximates 𝐴 well.

First, from definition, we have

E(𝑖,𝑗)∈[𝑁 ]×[𝑁 ] nnz(𝑏𝑖) + nnz(𝑐𝑗) =
nnz(𝐴) + nnz(𝐵)

𝑁
= 𝑟.

Hence, by Markov’s inequality, for at least a 1 − 𝛿/2 fraction of the pairs (𝑖, 𝑗) ∈
[𝑁 ]× [𝑁 ], we have nnz(𝑏𝑖) + nnz(𝑐𝑗) ≤ 𝑟 · 2

𝛿
.

Fix such a pair of (𝑖, 𝑗), and let 𝐼 = {𝑘 ∈ [𝑀 ] : (𝑏𝑖)𝑘 ̸= 0 ∨ (𝑐𝑗)𝑘 ̸= 0}, which
has size |𝐼| ≤ 𝑟 · 2

𝛿
. Note that if all the elements of 𝐼 have distinct images under

the mapping 𝑃 , then ⟨̃︀𝑏𝑖,̃︀𝑐𝑗⟩ = ⟨𝑏𝑖, 𝑐𝑗⟩ = 𝑀𝑖,𝑗. By a union bound, this happens with
probability at least 1− |𝐼|2/𝑚 over the random choice of 𝑃 .

Setting 𝜌𝛿 = (2
𝛿
)3, we have 1 − |𝐼|2/𝑚 ≥ 1 − 𝛿/2. Thus, by the probabilistic

method, there is a fixed 𝑃 for which ̃︀𝐵 ̃︀𝐶 agrees with 𝐴 on a 1− 𝛿 fraction of inputs,
and hence R𝐴(𝜌𝛿 · 𝑟2) ≤ 𝛿 ·𝑁2.
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Theorem 11.6 then follows by combining Lemma 11.10, Theorem 11.1, and The-
orem 11.2.

11.5.3 Threshold Circuit Lower Bound for ENP

We conclude this Section with a new threshold circuit lower bound for ENP.

Theorem 11.7. For every 𝛿 > 0 and prime 𝑝, there is an 𝑎 > 0 such that the
class ENP does not have non-uniform AC0[𝑝] ∘ LTF ∘ AC0[𝑝] ∘ LTF circuits of depth
𝑜(log 𝑛/ log log 𝑛) where the bottom LTF layer has 2𝑂(𝑛𝑎) gates, the rest of the circuit
has polynomial size, and the middle layer LTF gates have fan-in 𝑂(𝑛1/2−𝛿).

Theorem 11.7 follows from the connection between rigid matrices and threshold
circuits which we proved in Theorem 10.7 in the previous Chapter.

11.6 Algorithm for Counting Orthogonal Vectors
over Finite Fields

Finally, in this Section, we give a sketch of the algorithm for F𝑝𝑟 -#OV which we
stated in Theorem 11.4 and which is needed by our construction above. The algo-
rithm is a minor modification of the deterministic algorithm for #OV by Chan and
Williams [CW16]. It makes use of the polynomial method in algorithm design, the
same algorithmic technique we used earlier in Chapter 8.

11.6.1 Reduction to Prime Fields

We begin by sketching a reduction from F𝑝𝑟 -#OV to F𝑝-#OV. More precisely, for
a prime power 𝑞 = 𝑝𝑟, we give a reduction from one instance of F𝑞-#OV𝑛,𝑑 to a
constant number of different instances of F𝑝-#OV𝑛,𝑑·𝑂𝑟(1). The reduction builds on
ideas from [LPT+17] and [Wil18].

We first define an intermediate problem F𝑝-#AND-OV𝑛,𝑑,𝑟: given as input two
size-𝑛 collections 𝐴,𝐵 ⊆ (F𝑑

𝑞)
𝑟, with 𝐴 = {𝑎1, . . . , 𝑎𝑛} and 𝐵 = {𝑏1, . . . , 𝑏𝑛} (so, for

instance, each 𝑎𝑖 is an 𝑟-tuple of vectors from F𝑑
𝑞), the goal is to compute the number

of pairs (𝑖, 𝑖′) ∈ [𝑛]2 such that ⟨𝑎𝑖,𝑗, 𝑏𝑖′,𝑗⟩ = 0 for all 𝑗 ∈ [𝑟].

F𝑞-#OV⇒ F𝑝-#AND-OV. We first show how to reduce an F𝑞-#OV𝑛,𝑑 instance to
an F𝑝-#AND-OV𝑛,𝑑𝑟2,𝑟 instance in nearly linear time. Pick a degree-𝑟 F𝑝 irreducible
polynomial 𝑃 ; we know that F𝑞 isomorphic to 𝐹𝑝[𝑋]/(𝑃 ). In the calculations below,
we perform the arithmetic mod 𝑃 .

Suppose we have two vectors 𝑢, 𝑣 ∈ F𝑑
𝑞 . Let 𝑢𝑖 =

∑︀𝑟−1
𝑗=0 𝛼𝑖,𝑗 · 𝑋𝑗, and 𝑣𝑖 =
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∑︀𝑟−1
𝑗=0 𝛽𝑖,𝑗 ·𝑋𝑗 for coefficients 𝛼𝑖,𝑗, 𝛽𝑖,𝑗 ∈ F𝑝. We have that

𝑑∑︁
𝑖=1

𝑢𝑖 · 𝑣𝑖 =
𝑑∑︁

𝑖=1

(︃
𝑟−1∑︁
𝑗=0

𝛼𝑖,𝑗 ·𝑋𝑗

)︃
·

(︃
𝑟−1∑︁
𝑗=0

𝛽𝑖,𝑗 ·𝑋𝑗

)︃

=
𝑑∑︁

𝑖=1

𝑟−1∑︁
𝑗=0

𝑟−1∑︁
𝑘=0

𝛼𝑖,𝑗 · 𝛽𝑖,𝑘𝑋𝑗+𝑘.

Define the coefficients 𝛾𝑗+𝑘,ℓ ∈ F𝑝 so that 𝑋𝑗+𝑘 =
∑︀𝑟−1

ℓ=0 𝛾𝑗+𝑘,ℓ · 𝑋ℓ (mod 𝑃 ). The
above simplifies to

𝑟−1∑︁
𝑗=0

𝑟−1∑︁
𝑘=0

𝑋𝑗+𝑘 ·
𝑑∑︁

𝑖=1

𝛼𝑖,𝑗 · 𝛽𝑖,𝑘 =
𝑟−1∑︁
ℓ=0

𝑋ℓ ·

(︃
𝑟−1∑︁
𝑗=0

𝑟−1∑︁
𝑘=0

𝑑∑︁
𝑖=1

𝛾𝑗+𝑘,ℓ · 𝛼𝑖,𝑗 · 𝛽𝑖,𝑘

)︃
(mod 𝑃 ).

We therefore see that ⟨𝑢𝑖, 𝑣𝑖⟩ = 0 if and only if

𝑟−1∑︁
𝑗=0

𝑟−1∑︁
𝑘=0

𝑑∑︁
𝑖=1

𝛾𝑗+𝑘,ℓ · 𝛼𝑖,𝑗 · 𝛽𝑖,𝑘 = 0 (11.1)

for all 0 ≤ ℓ ≤ 𝑟 − 1. For each ℓ, we can build vectors 𝑢(ℓ)𝑖 and 𝑣
(ℓ)
𝑖 in F𝑟2·𝑑

𝑝 so
that ⟨𝑢(ℓ)𝑖 , 𝑣

(ℓ)
𝑖 ⟩ equals the left hand side of (11.1). This transformation reduces an

F𝑞-#OV𝑛,𝑑 instance to an F𝑝-#AND-OV𝑛,𝑑𝑟2,𝑟 instance as desired.

F𝑝-#AND-OV ⇒ F𝑝-#OV. Now, given an F𝑝-#AND-OV𝑛,𝑑,𝑟 instance with input
collections 𝐴,𝐵, we show how to reduce it to 𝑝𝑟 different F𝑝-#OV𝑛,𝑑𝑟+1 instances,
again in nearly linear time.

Let 𝑎, 𝑏 ∈ (F𝑑
𝑝)

𝑟. For a random vector 𝑢 ∈ F𝑟
𝑝, observe that:

∙ If ⟨𝑎𝑖, 𝑏𝑖⟩ = 0 for all 𝑖 ∈ [𝑟], then
∑︀𝑟

𝑖=1 𝑢𝑖 · ⟨𝑎𝑖, 𝑏𝑖⟩ is always zero.

∙ Otherwise,
∑︀𝑟

𝑖=1 𝑢𝑖 · ⟨𝑎𝑖, 𝑏𝑖⟩ = 1 with probability 1/𝑝.

For our reduction, we iterate over all vectors 𝑢 ∈ F𝑟
𝑝, and sum the number of pairs

(𝑎, 𝑏) ∈ 𝐴×𝐵 such that

𝑟∑︁
𝑖=1

𝑢𝑖 · ⟨𝑎𝑖, 𝑏𝑖⟩ =

⟨
𝑟

○
𝑖=1

𝑢𝑖𝑎𝑖,
𝑟

○
𝑖=1

𝑏𝑖

⟩
= 1.

For each 𝑢, this can be written as an F𝑝-#OV𝑛,𝑑𝑟+1 instance (via ⟨𝑎, 𝑏⟩ = 1 ⇔ ⟨𝑎 ∘
1, 𝑏 ∘ −1⟩ = 0).

For a pair (𝑎, 𝑏) ∈ 𝐴×𝐵, if ⟨𝑎𝑖, 𝑏𝑖⟩ = 0 for all 𝑖 ∈ [𝑟], then (𝑎, 𝑏) is never counted
in the above sum. Otherwise, it is counted 𝑝𝑟−1 times. Therefore, by summing up the
results of all these F𝑝-#OV instances after the reduction, dividing the result by 𝑝𝑟−1,
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and then finally subtracting the resulting number from |𝐴| · |𝐵|, we can compute the
answer to the given F𝑛,𝑑,𝑟-#AND-OV instance.

11.6.2 Algorithm for Prime Fields

In this subsection, we give a self-contained exposition of the F𝑝-#OV algorithm which
is implicit in [CW16]. We will make use of the polynomial method in algorithm design,
and in particular, we will use Lemma 8.2 from Chapter 8 for quickly evaluating a
sparse polynomials on many inputs by using fast matrix multiplication. In [CW16],
the deterministic #OV algorithm works by combining two key technical tools: small-
biased sets, and modulus-amplifying polynomials. We won’t need small-biased sets
here as we only aim to solve F𝑝𝑟 -#OV. We first recall the definition of modulus-
amplifying polynomials.

Lemma 11.11 (Modulus-Amplifying Polynomial [Yao90, BT94]). For all integers
ℓ ≥ 1, there is a polynomial 𝐹ℓ over Z of degree (2ℓ − 1) with 𝑂(ℓ)-bit coefficients
such that for all integers 𝑚 ≥ 1 and all 𝑎 ∈ Z:

(1) if 𝑎 ≡ 0 (mod 𝑚) , then 𝐹ℓ(𝑎) ≡ 0 (mod 𝑚ℓ), and

(2) if 𝑎 ≡ 1 (mod 𝑚), 𝐹ℓ(𝑎) ≡ 1 (mod 𝑚ℓ).

Now we are ready to prove Theorem 11.4 when the modulus 𝑞 is a prime. The
case when 𝑞 is a prime power then follows using the reduction from Section 11.6.1.

Theorem 11.8. For all primes 𝑝, there is an 𝑛2−Ω(1/ log(𝑑/ log𝑛)) time deterministic
algorithm for F𝑝-#OV𝑛,𝑑, when 𝑑 = 𝑛𝑜(1).

Proof. Let ℓ be a parameter to be specified later. Let 𝑋, 𝑌 be two collections of 𝑝ℓ/4
vectors from F𝑑

𝑝. We define the polynomial

𝑃 (𝑋, 𝑌 ) :=
∑︁

(𝑥,𝑦)∈𝑋×𝑌

(1− 𝐹ℓ(⟨𝑥, 𝑦⟩𝑝−1)),

where 𝐹ℓ is the modulus-amplifying polynomial from Lemma 11.11. Hence,

1− 𝐹ℓ(⟨𝑥, 𝑦⟩𝑝−1) ≡

{︃
1 (mod 𝑝ℓ) when ⟨𝑥, 𝑦⟩ ≡ 0 (mod 𝑝),

0 (mod 𝑝ℓ) when ⟨𝑥, 𝑦⟩ ̸≡ 0 (mod 𝑝).

Let us count the number 𝑀 of monomials in 𝐹ℓ(⟨𝑥, 𝑦⟩𝑝−1) = 𝐹ℓ((𝑥1𝑦1 + 𝑥2𝑦2 +
· · · + 𝑥𝑑𝑦𝑑)

𝑝−1) when it is expanded and simplified. 𝐹ℓ is a polynomial of degree
(2ℓ − 1) · (𝑝 − 1) in 𝑥, 𝑦 ∈ F𝑑

𝑝. In particular, since we are working over F𝑝, we may
simplify 𝐹ℓ so that each of the 2𝑑 input variables has individual degree at most 𝑝− 1
in any given monomial. Thus, using the simple bound that no monomial depends on
more variables than the degree of the polynomial, combined with the fact that the
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power of 𝑥𝑖 in a given monomial is always equal to the power of 𝑦𝑖 in that monomial,
we get the bound

𝑀 ≤ (𝑝− 1)2ℓ·𝑝 ·
2ℓ·𝑝∑︁
𝑖=0

(︂
𝑑

𝑖

)︂
≤ (𝑝− 1)2ℓ·𝑝 ·𝑂

(︂
𝑑

ℓ · 𝑝

)︂2ℓ·𝑝

≤ 𝑂

(︂
𝑑

ℓ

)︂2ℓ·𝑝

.

Next, we will construct two mappings Φ𝑋 ,Φ𝑌 : (F𝑑
𝑝)

𝑝ℓ/4 → Z𝑀 such that for any
𝑋, 𝑌 ∈ (F𝑑

𝑝)
𝑝ℓ/4 ,

𝑃 (𝑋, 𝑌 ) = ⟨Φ𝑋(𝑋),Φ𝑌 (𝑌 )⟩.

We construct Φ𝑋 ,Φ𝑌 as follows. For a set 𝑆 ⊆ [𝑑], let 𝑥𝑆 (resp. 𝑦𝑆) denote
∏︀

𝑖∈𝑆 𝑥𝑖
(
∏︀

𝑖∈𝑆 𝑦𝑖). Let 𝑆1, 𝑆2, . . . , 𝑆𝑀 be an enumeration of all subsets of [𝑑] of size no greater
than (2ℓ − 1) · (𝑝 − 1). There are corresponding coefficients 𝑐1, 𝑐2, . . . , 𝑐𝑀 ∈ Z such
that

1− 𝐹ℓ(⟨𝑥, 𝑦⟩𝑝−1) =
𝑀∑︁
𝑖=1

𝑐𝑖 · 𝑥𝑆𝑖
· 𝑦𝑆𝑖

.

We can then define

Φ𝑋(𝑋) :=

(︃∑︁
𝑥∈𝑋

𝑐1 · 𝑥𝑆1 ,
∑︁
𝑥∈𝑋

𝑐2 · 𝑥𝑆2 , . . . ,
∑︁
𝑥∈𝑋

𝑐𝑀 · 𝑥𝑆𝑀

)︃
,

Φ𝑌 (𝑌 ) :=

(︃∑︁
𝑦∈𝑌

𝑦𝑆1 ,
∑︁
𝑦∈𝑌

𝑦𝑆2 , . . . ,
∑︁
𝑦∈𝑌

𝑦𝑆𝑀

)︃
,

and it follows that

⟨Φ𝑋(𝑋),Φ𝑌 (𝑌 )⟩ =
𝑀∑︁
𝑖=1

∑︁
(𝑥,𝑦)∈𝑋×𝑌

𝑐𝑖 · 𝑥𝑆𝑖
· 𝑦𝑆𝑖

= 𝑃 (𝑋, 𝑌 ).

Picking 𝑐 = 𝑑/ log 𝑛 and ℓ = 𝜀/𝑝 · log 𝑛/ log 𝑐 for a small enough constant 𝜀, we
have

𝑀 ≤ 𝑂

(︂
𝑐 log 𝑛

ℓ

)︂2ℓ·𝑝

= 𝑂

(︂
𝑝 · 𝑐 log 𝑐

𝜀

)︂2𝜀 log𝑛/ log 𝑐

≤ 𝑛0.01.

Let 𝑏 = 𝑝ℓ/4 (and set 𝜀 small enough so that 𝑏 ≤ 𝑛0.01 as well). We partition 𝐴
(𝐵) into 𝑛/𝑏 blocks 𝐴1, 𝐴2, . . . , 𝐴𝑛/𝑏 (𝐵1, 𝐵2, . . . , 𝐵𝑛/𝑏), each of size 𝑏. We then apply
the algorithm from Lemma 8.2 to evaluate 𝑃 (𝐴𝑖, 𝐵𝑗) for each (𝑖, 𝑗) ∈ [𝑛/𝑏] × [𝑛/𝑏]
in (𝑛/𝑏)2 · polylog(𝑛) = 𝑛2−1/𝑂(log 𝑐) time by multiplying two matrices of dimensions
𝑛/𝑏× 𝑛0.01 and 𝑛0.01 × 𝑛/𝑏 over Z whose entries are polylog(𝑛)-bit integers. Since

𝑃 (𝐴𝑖, 𝐵𝑗) ≡
∑︁

(𝑥,𝑦)∈𝐴𝑖×𝐵𝑗

[⟨𝑥, 𝑦⟩ ≡ 0 (mod 𝑝)] (mod 𝑝ℓ),

this allows us to solve F𝑝-#OV in 𝑛2−1/𝑂(log 𝑐) time.
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