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Postnikov, and discuss a naturally arising example of a 
Laurent phenomenon algebra, as studied by Lam–Pylyavskyy.
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1. Introduction

Circular planar electrical networks are objects from classical physics: given a resistor 
network, one can compute its response to imposed voltages via the Dirichlet-to-Neumann 
map. An inverse boundary problem for electrical networks was studied in detail by 
de Verdière, Gitler, and Vertigan [5] and Curtis, Ingerman, and Morrow [4]: given the 
Dirichlet-to-Neumann map, can the network be recovered?
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In general, the answer is “no,” though much can be said about the information that 
can be recovered. If, for example, the underlying graph of the electrical network is known 
and is critical, the resistances are uniquely determined [4, Theorem 2]. Moreover, any 
two networks that produce the same response matrix can be related by a certain class 
of combinatorial transformations, the local equivalences [5, Théorème 4].

The goal of this paper is to study more closely the rich theory of circular planar 
electrical networks. We define a poset EPn of circular planar graphs, under the operations 
of contraction and deletion of edges, and investigate its properties. By [4, Theorem 4] and 
[5, Théorème 3], the space of response matrices for circular planar electrical networks of 
order n decomposes as a disjoint union of open cells, each diffeomorphic to a product of 
copies of the positive real line. We then have:

Theorem 3.1.3. If [H] and [G] are equivalence classes of circular planar graphs, then 
[H] ≤ [G] in EPn if and only if Ω(H) ⊂ Ω(G), where Ω(H) denotes the space of 
response matrices for conductances on H.

Using the important tool of medial graphs developed in [4] and [5], we also prove:

Theorem 3.2.4. EPn is graded by number of edges of critical representatives.

We then obtain the following enumerative properties of EPn via medial graphs, adapt-
ing techniques of Callan [3] and Stein and Everett [21].

Theorem 4.2.5. Put Xn = |EPn|, the number of equivalence classes of electrical networks 
of order n. Then:

(a) X1 = 1 and

Xn = 2(n− 1)Xn−1 +
n−2∑
j=2

(j − 1)XjXn−j .

(b) [tn−1]X(t)n = n · (2n − 3)!!, where X(t) is the generating function for the sequence
{Xi}.

(c) Xn/(2n − 1)!! → e−1/2 as n → ∞.

Associated to any circular planar electrical network of order n is its n × n response 
matrix, the Dirchlet-to-Neumann map expressed in a canonical basis. Response matrices 
are characterized in [4, Theorem 4] as the symmetric matrices with row sums equal to 
zero and circular minors non-negative. Furthermore, the strictly positive minors can be 
identified combinatorially using [4, Lemma 4.2].

A natural question that arises is: which sets of circular minors can be positive, while 
the others are zero? Postnikov [16] studied a similar question in the totally nonnegative 
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Grassmannian: for k × n matrices A, with k < n and all k × k minors nonnegative, 
which sets (matroids) of k × k minors can be the set of positive minors of A1? These 
special matroids, called positroids by Knutson, Lam, and Speyer [11], were found in [16]
to index many interesting combinatorial objects. Two of these objects, plabic graphs and 
alternating strand diagrams, are highly similar to circular planar electrical networks and 
medial graphs.

In light of this question, we give an axiomatization of electrical positroids, motivated 
by the Grassmann–Plücker relations. The following theorem shows that this notion is, 
in a sense, a natural extension of Postnikov’s theory of positroids:

Theorem 5.2.1. A set S of circular pairs is the set of positive circular minors of a 
response matrix if and only if S is an electrical positroid.

Finally, we consider positivity tests for response matrices. In [8], Fomin and Zelevinsky 
describe various positivity tests for totally positive matrices: given an n ×n matrix, there 
exist sets of n2 minors whose positivity implies the positivity of all minors. Moreover, 
positivity tests are related to each other combinatorially via double wiring diagrams. 
Fomin and Zelevinsky later introduced cluster algebras in [9], in part, to study similar 
positivity phenomena.

In a similar way, we describe positivity tests of size 
(
n
2
)

for n ×n matrices. Some such 
sets were first described by Kenyon [10, §4.5.3]. While they do not form clusters in a 
cluster algebra, our positivity tests form clusters in a Laurent phenomenon algebra, as 
introduced by Lam and Pylyavskyy in [12]. We find:

Theorem 6.2.16. There exists an LP algebra LMn, isomorphic to the polynomial ring on (
n
2
)

generators, with an initial seed Dn of diametric circular minors. Dn is a positivity 
test for circular minors, and furthermore, all “Plücker clusters” in LMn, that is, clusters 
of circular minors, are positivity tests.

Moreover, LMn is “doubly-covered” by a cluster algebra CMn that behaves similarly 
to LMn when we restrict to certain types of mutations. Further investigation of the 
clusters leads to an analogue of weak separation, as studied by Oh, Speyer, and Postnikov 
[15] and Scott [19]. Conjecturally, the “Plücker clusters,” of LMn correspond exactly 
to the maximal pairwise weakly separated sets of circular pairs. We conjecture that 
these maximal pairwise weakly separated sets are related to each other by mutations 
corresponding to the Grassmann–Plücker relations, and present evidence to this end.

The roadmap of the paper is as follows. We briefly review terminology and known 
results in Section 2, where we also establish some basic properties of electrical networks. 
In Section 3, we define the poset EPn and establish its most important properties in 

1 It is worth noting that the introduction of the totally nonnegative Grassmannian was motivated in part 
by the study of electrical networks, see [16, p. 2].
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Theorems 3.1.3 and 3.2.4. The study of enumerative properties of EPn is undertaken in 
Section 4, where we prove the three parts of Theorem 4.2.5. In Section 5, we motivate 
and introduce electrical positroids, the main result being Theorem 5.2.1. Finally, in 
Section 6, we construct LMn using positivity tests and prove Theorem 6.2.16, then 
conclude by establishing weak forms of Conjecture 6.3.4, which relates the clusters of 
LMn to positivity tests and our analogue of weak separation.

2. Electrical networks

We begin a systematic discussion of electrical networks by recalling various notions 
and results from [4]. We will also introduce some new terminology and conventions which 
will aid our exposition, in some cases deviating from [4].

2.1. Circular planar electrical networks, up to equivalence

Definition 2.1.1. A circular planar electrical network is a circular planar graph (i.e., 
a planar graph embedded in a disk, where vertices on the boundary of the disk are 
referred to as boundary vertices) Γ , together with a conductance map γ : E(Γ ) → R>0.

To avoid cumbersome language, we will henceforth refer to these objects as electrical 
networks. We will also call the number of boundary vertices of an electrical network 
(or a circular planar graph) its order. We also adopt the following convention: cur-
rent going in to the disk is measured to be negative. This convention is the opposite 
of that used in [4], but we will prefer it for the ensuing elegance of the statement of 
Theorem 2.2.6.

Associated to an electrical network (Γ, γ) is its response matrix (see [4, §3]), measuring 
the network’s response to potentials applied at boundary vertices. Two electrical networks 
(Γ1, γ1), (Γ2, γ2) are equivalent if they have the same response matrix. The resulting 
equivalence relation ∼ may be described combinatorially:

Theorem 2.1.2. (See [5, Théorème 4].) Two electrical networks are equivalent if and only 
if they are related by a sequence of local equivalences (and their inverses): removal of 
self-loops or spikes, replacement of edges in series or in parallel, or Y -Δ transformations.

The relation ∼ is also an equivalence relation on underlying circular planar graphs, 
and, when there is no likelihood for confusion, we will often mean this underlying graph 
when referring to an “electrical network.”

2.2. Circular pairs and circular minors

Circular pairs and circular minors are central to the characterization of response 
matrices.
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Definition 2.2.1. Let P = {p1, p2, . . . , pk} and Q = {q1, q2, . . . , qk} be disjoint ordered 
subsets of the boundary vertices of an electrical network (Γ, γ). We say that (P ; Q) is 
a circular pair if p1, . . . , pk, qk, . . . , q1 are in clockwise order around the circle. We will 
refer to k as the size of the circular pair.

Remark 2.2.2. We will take (P ; Q) to be the same circular pair as (Q̃; P̃ ), where P̃
denotes the ordered set P with its elements reversed.

Definition 2.2.3. Let (P ; Q) and (Γ, γ) be as in Definition 2.2.1. We say that there is a
connection from P to Q in Γ if there exists a collection of vertex-disjoint paths from pi to 
qi in Γ , and furthermore each path in the collection contains no boundary vertices other 
than its endpoints. We denote the set of circular pairs (P ; Q) for which P is connected 
to Q by π(Γ ).

Definition 2.2.4. Let (P ; Q) and (Γ, γ) be as in Definition 2.2.1, and let M be the response 
matrix. We define the circular minor associated to (P ; Q) to be the determinant of the 
k × k matrix M(P ; Q) with M(P ; Q)i,j = Mpi,qj .

Remark 2.2.5. When there is no ambiguity, we refer to submatrices and their determi-
nants both as minors, interchangeably.

We are interested in circular minors and connections because of the following results, 
which are immediate corollaries of [4, Theorem 4] and [4, Theorem 4.2]:

Theorem 2.2.6. Let M be an n × n matrix. Then:

(a) M is the response matrix for an electrical network (Γ, γ) if and only if M is symmet-
ric with row and column sums equal zero, and each of the circular minors M(P ; Q)
is non-negative.

(b) If M is the response matrix for an electrical network (Γ, γ), the positive circular 
minors M(P ; Q) are exactly those for which there is a connection from P to Q.

2.3. Critical graphs

In this section, we introduce critical graphs, a particular class of circular planar graphs, 
and give some important properties.

Definition 2.3.1. Let G be a circular planar graph. G is said to be critical if, for any 
removal of an edge via deletion or contraction (note that an edge between two boundary 
vertices cannot be contracted), there exists a circular pair (P ; Q) for which P is connected 
to Q through G before the edge removal, but not afterward.
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Theorem 2.3.2. (See [5, Théorème 2].) Every equivalence class of circular planar graphs 
has a critical representative.

Theorem 2.3.3. (See [4, Theorem 1].) Suppose G1, G2 are critical. Then, G1 and G2 are 
Y-Δ equivalent (that is, related by a sequence of Y-Δ transformations) if and only if 
π(G1) = π(G2).

Corollary 2.3.4. Let G1, G2 be arbitrary circular planar graphs. Then, G1 ∼ G2 if and 
only if π(G1) = π(G2).

Theorem 2.3.5. (See [4, Theorem 4].) Suppose that G is critical and has N edges. Put 
π = π(G), and let Ω(π) denote the set of response matrices whose positive minors are 
exactly those corresponding to the elements of π. Then, the map rG : RN

>0 → Ω(π), taking 
the conductances on the edges of G to the resulting response matrix, is a diffeomorphism.

It follows that the space of response matrices for electrical networks of order n is the 
disjoint union of the cells Ω(π), some of which are empty. The non-empty cells Ω(π)
are those which correspond to critical graphs G with π(G) = π. We will describe how 
these cells are attached to each other in Proposition 3.1.2. Later, we will prefer to index 
these cells by their underlying (equivalence classes of) circular planar graphs: Ω(G) will 
denote the space of response matrices for conductances on G.

Theorem 2.3.6. Let (Γ, γ) be an electrical network. The following are equivalent:

(1) Γ is critical.
(2) Given the response matrix M of (Γ, γ), γ can uniquely be recovered from M and Γ .
(3) Γ has the minimal number of edges among elements of its equivalence class.
(4) The medial graph (see [4, §6]) M(Γ ) of Γ is lensless.

Proof. Apply [4, Lemma 13.1], [4, Lemma 13.2], and Proposition 2.3.4. �
2.4. Medial graphs

Medial graphs are constructed in [4, §6] as a dual object to electrical networks, and 
will be an important tool in our study thereof. Their significance is already evident from 
Theorem 2.3.6.

If G is a critical graph, the geodesics of M(G) consist of n “wires” connecting pairs of 
the 2n boundary medial vertices. Thus, any critical graph G gives a perfect matching of 
the medial boundary vertices. Furthermore, suppose H ∼ G is critical. By Theorem 2.3.3
and Proposition 2.3.4, G and H are related by Y-Δ transformations, so M(G) and 
M(H) are related by motions. In particular, M(G) and M(H) match the same pairs 
of boundary medial vertices, so we have a well-defined map from critical circular planar 
graph equivalence classes to matchings. In fact, this map is injective:
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Proposition 2.4.1. Suppose that the geodesics of two lensless medial graphs M(G), M(H)
match the same pairs of medial boundary vertices. Then, the medial M(G) and M(H)
are related by motions, or equivalently, G and H are Y-Δ equivalent.

Proof. Implicit in [4, Theorem 7.2]. �
Definition 2.4.2. Given the boundary vertices of a circular planar graph embedded in a 
disk D, take 2n medial boundary vertices as before. A wiring diagram is collection of n
smooth curves (wires) embedded in D, each of which connects a pair of medial boundary 
vertices in such a way that each medial boundary vertex has exactly one incident wire. 
We require that wiring diagrams have no triple crossings or self-loops. As with electrical 
networks and medial graphs, the order of the wiring diagram is defined to be equal to n.

It is immediate from Proposition 2.4.1 that, given a set of boundary vertices, perfect 
matchings on the set of medial boundary vertices are in bijection with motion-equivalence 
classes of lensless wiring diagrams. Thus, we have an injection G �→ M(G) from critical 
graph equivalence classes to motion-equivalence classes of lensless wiring diagram, but 
this map is not surjective. We describe the image of this injection in the next definition:

Definition 2.4.3. Given boundary vertices V1, . . . , Vn and a wiring diagram W on the 
same boundary circle, a dividing line for W is a line ViVj with i �= j such that there does 
not exist a wire connecting two points on opposite sides of ViVj . The wiring diagram is 
called full if it has no dividing lines.

It is obvious that fullness is preserved under motions. Now, suppose that we have a 
lensless full wiring diagram W ; we now define a critical graph E(W ). Let D be the disk 
in which our wiring diagram is embedded. The wires of W divide D into faces, and it is 
well-known that these faces can be colored black and white such that neighboring faces 
have opposite colors.

The condition that W be full means that each face contains at most one boundary 
vertex. Furthermore, all boundary vertices are contained in faces of the same color; 
without loss of generality, assume that this color is black. Then place an additional vertex 
inside each black face which does not contain a boundary vertex. The boundary vertices, 
in addition to these added interior vertices, form the vertex set for E(W ). Finally, two 
vertices of E(W ) are connected by an edge if and only if their corresponding faces share 
a common point on their respective boundaries, which must be an intersection p of two 
wires of W . This edge is drawn as to pass through p. An example is shown in Fig. 1.

It is straightforward to check that M and E are inverse maps. We have thus proven 
the following result:

Theorem 2.4.4. The associations G �→ M(G) and W �→ E(W ) are inverse bijections be-
tween equivalence classes of critical graphs and motion-equivalence classes of full lensless 
wiring diagrams.
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Fig. 1. Recovering an electrical network from its (lensless) medial graph. The square vertices are the vertices 
of the medial graph, and the dashed edges are edges of the medial graph, while the circle vertices are the 
vertices of the network. The middle vertex was recovered.

Fig. 2. Breaking a crossing, in two ways.

Finally, let us discuss the analogues of contraction and deletion in medial graphs. Each 
operation corresponds to the breaking of a crossing, as shown in Fig. 2. A crossing may 
be broken in two ways: breaking outward from the corresponding edge of the underlying 
electrical network corresponds to contraction, and breaking along the edge corresponds 
to deletion. In the same way that contraction or deletion of an edge in a critical graph 
is not guaranteed to yield a critical graph, breaking a crossing in lensless medial graphs 
does not necessarily yield a lensless medial graph.

Not all breakings of crossings are valid, as some crossings may be broken in a particular 
way to create a dividing line. In fact, it is straightforward to check that creating a dividing 
line by breaking a crossing corresponds to contracting a boundary edge, which we also 
do not allow. Thus, we allow all breakings of crossings as long as no dividing lines are 
created; such breakings are called legal.

3. The electrical poset EPn

We now consider EPn, the poset of circular planar graphs under contraction and 
deletion. We will find that, equivalently, EPn is the poset of disjoint cells Ω(G), as 
defined in Section 2.3 under containment in closure.
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Fig. 3. EP3.

3.1. Construction

Before constructing EPn, we need a lemma to guarantee that the order relation will 
be well-defined.

Lemma 3.1.1. Let G be a circular planar graph, and suppose that H can be obtained from 
G by a sequence of contractions and deletions. Consider a circular planar graph G′ with 
G′ ∼ G. Then, there exists a sequence of contractions and deletions starting from G′

whose result is some H ′ ∼ H.

Proof. By induction, we may assume that H can be obtained from G by one contraction 
or one deletion. Furthermore, by Theorem 2.1.2, we may assume by induction that G
and G′ are related by a local equivalence. From here, the proof is a matter of checking 
that, for each of the possible local equivalences G ∼ G′ (see Theorem 2.1.2), a sequence 
of contractions and deletions may be applied to G′ to obtain some H ′ ∼ H. This is 
straightforward. �

For distinct equivalence classes [G], [H], we may now define [H] < [G] if, given any 
G ∈ [G], there exists a sequence of contractions and deletions that may be applied to G
to obtain an element of [H]. We thus have a (well-defined) electrical poset of order n, 
denoted EPn, of equivalence classes of circular planar graphs or order n. If H ∈ [H] and 
G ∈ [G] with [H] < [G], we will write H < G.

Fig. 3 shows EP3, with elements represented as medial graphs (left) and electrical 
networks (right). Theorem 2.3.2 guarantees that the electrical networks may be taken to 
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be critical. Note that EP3 is isomorphic to the Boolean Lattice B3, because all critical 
graphs of order 3 arise from taking edge-subsets of the top graph.

Let us now give an alternate description of the poset EPn. Associated to each circular 
planar graph G, we have an open cell Ω(G) of response matrices for conductances on G, 
where Ω(G) is taken to be a subset of the space Ωn of symmetric n × n matrices. It is 
clear that, if G ∼ G′, we have, by definition, Ω(G) = Ω(G′).

Proposition 3.1.2. Let G be a circular planar graph. Then,

Ω(G) = 

H≤G

Ω(H), (3.1.1)

where Ω(G) denotes the closure of Ω(G) in Ωn, and the union is taken over equivalence 
classes of circular planar graphs H ≤ G in EPn.

Because the Ω(G) are pairwise disjoint when we restrict ourselves to equivalence 
classes of circular planar graphs (a consequence of Theorems 2.2.6 and 2.3.3), we get:

Theorem 3.1.3. [H] ≤ [G] in EPn if and only if Ω(H) ⊂ Ω(G).

Proof of Proposition 3.1.2. Without loss of generality, we may take G to be critical. 
Let N be the number of edges of G. By 2.3.5, the map rG : R

N
>0 → Ω(G) ⊂ Ωn, 

sending a collection of conductances of the edges of G the resulting response matrix, 
is a diffeomorphism. We will describe a procedure for producing a response matrix for 
any electrical network whose underlying graph H is obtainable from G by a sequence of 
contractions and deletions (that is, H ≤ G).

Given γ ∈ R
N
>0, write γ = (γ1, . . . , γN ). Note that for each i ∈ [1, N ] and fixed 

conductances γ1, . . . , γ̂i, . . . , γn, the limit limγi→0 rG(γ) must exist; indeed, sending the 
conductance γi to zero is equivalent to deleting its associated edge. This fact is most 
easily seen by physical reasoning: an edge of zero conductance has no current flowing 
through it, and thus the network may as well not have this edge. Thus, limγi→0 rG(γ) is 
just rG′(γ1, . . . , γ̂i, . . . , γn), where G′ is the result of deleting e from G. Similarly, we find 
that limγi→∞ rG(γ) is rG′′(γ1, . . . , γ̂i, . . . , γn), where G′′ is the result of contracting e.

It follows easily, then, that for all H which can be obtained from G by a contraction or 
deletion, we have Ω(H) ⊂ Ω(G), because, by the previous paragraph, Ω(H) = Im(rH) ⊂
Ω(G). By induction, we have the same for all H ≤ G.

It is left to check that any M ∈ Ω(G) is in some cell Ω(H) with H ≤ G. We have 
that M is a limit of response matrices M1, M2, . . . ∈ Ω(G). The determinants of the 
circular minors of M are limits of determinants of the same minors of the Mi, and thus 
non-negative. It follows that M is the response matrix for some network H, that is, 
M ∈ Ω(H). We claim that H ≤ G, which will finish the proof.

Consider the sequence {Ck} defined by Ck = r−1
G (Mk), which is a sequence of con-

ductances on G. For each edge e ∈ G, we get a sequence {C(e)k} of conductances of 
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e in {Ck}. It is then a consequence of the continuity of rG, r−1
G , and the existence of 

the limits limγi→0 rG(γ), limγi→∞ rG(γ), that the sequences {C(e)k} each converge to a 
finite nonnegative limit or otherwise go to +∞.

Furthermore, we claim that for a boundary edge e (that is, one that connects two 
boundary vertices), {C(e)k} cannot tend to +∞. Suppose, instead, that such is the case, 
that for some boundary edge e = ViVj , we have C(e)k → ∞. Then, note that imposing 
a positive voltage at Vi and zero voltage at all other boundary vertices sends the current 
measurement at Vi to −∞ as C(e)k → ∞. In particular, our sequence M1, M2, . . . cannot 
converge, so we have a contradiction.

To finish, it is clear, for example, using similar ideas to the proof of the first direction, 
that contracting the edges e for which C(e)k → ∞ (which can be done because such e
cannot be boundary edges) and deleting those for which C(e)k → 0 yields H. The proof 
is complete. �
3.2. Gradedness

In this section, we prove our first main theorem, that EPn is graded.

Proposition 3.2.1. [G] covers [H] in EPn if and only if, for a critical representative 
G ∈ [G], an edge of G may be contracted or deleted to obtain a critical graph in [H].

Proof. First, suppose that G and H are critical graphs such that deleting or contracting 
an edge of G yields H. Then, if [G] > [X] > [H] for some circular planar graph X, some 
sequence of at least two deletions or contractions of G yields H ′ ∼ H. It is clear that H ′

has fewer edges than H, contradicting Theorem 2.3.6. It follows that [G] covers [H].
We now proceed to prove the opposite direction. Fix a critical graph G, and let e be 

an edge of G that can be deleted or contracted in such a way that the resulting graph 
H is not critical. By way of Lemmas 3.2.2 and 3.2.3, we will first construct T ∼ G with 
certain properties, then, from T , construct a graph G′ such that [G] > [G′] > [H]. The 
desired result will then follow: indeed, suppose that [G] covers [H] and G ∈ [G] is critical. 
Then, there exists an edge e ∈ G which may be contracted or deleted to yield H ∈ [H], 
and it will also be true that H is critical.

First, we translate to the language of medial graphs. When we break a crossing in the 
medial graph M(G), we may create lenses that must be resolved to produce a lensless 
medial graph. Suppose that our deletion or contraction of e ∈ G corresponds to breaking 
the crossing between the geodesics ab and cd in M(G), where the points a, c, b, d appear 
in clockwise order on the boundary circle. Let ab ∩ cd = p, and suppose that when the 
crossing at p is broken, the resulting geodesics are ad and cb.

For what follows, let F = {f1, . . . , fk} denote the set of geodesics fi in M(G) such 
that fi intersects ab between a and p, and also intersects cd between d and p. In the case 
that F is empty, we relabel the points, swapping a with b and c with d. Then define F
as before, with the newly labeled points. Now, if F is again empty, breaking the crossing 
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at p does not form a lens, so we have a critical graph and are done. Thus, we can assume 
that F is nonempty. We now construct T in two steps.

Lemma 3.2.2. There exists a lensless medial graph K such that:

• K is equivalent to M(G),
• geodesics ab and cd still intersect at p, and breaking the crossing at p to give geodesics 

ad, bc yields a medial graph equivalent to M(H), and
• for fi, fj ∈ F which cross each other, the crossing fi ∩ fj lies outside the sector apd.

Proof. Similar to that of [4, Lemma 6.2]. �
It now suffices to consider the graph K. Let f1 ∈ F be the geodesic intersecting ab at 

the point v1 closest to p, and let w1 = f1 ∩ cd.

Lemma 3.2.3. There exists a lensless medial graph K ′ ∼ K, such that:

• geodesics ab and cd intersect at p, as before, and breaking the crossing at p to give 
geodesics ad, bc yields a medial graph equivalent to M(H), and

• no other geodesic of K ′ enters the triangle with vertices v1, p, w1.

Proof. The lemma follows from a similar argument as that in the proof of Lemma 3.2.2.
�

We are now ready to finish the proof of Proposition 3.2.1. Let T = E(K ′) (see Theo-
rem 2.4.4). Then, in T , because of the properties of K ′, contracting e to form the graph 
H ′ ∼ H forms a pair of parallel edges. Replacing the parallel edges with a single edge 
gives a circular planar graph H ′′, which is still equivalent to H. Suppose that e has 
endpoints B, C and the edges in parallel are formed with A. Then, we have the triangle 
ABC in T .

Write S = π(T ) (see Definition 2.2.3) and S′ = π(H ′). Because T is critical, S′ �= S, so 
fix (P ; Q) ∈ S−S′. Then, it is straightforward to check that any connection C between P
and Q must have used both B and C, but cannot have used the edge BC. Furthermore, C
can use at most one of the edges AB, AC. Indeed, if both AB, AC are used, they appear 
in the same path γ, but replacing the two edges AB, AC with BC in γ gives a connection 
between P and Q, but we know that no such connection can use BC, a contradiction. 
Without loss of generality, suppose that C does not use AB. Then, deleting AB from 
T yields a graph G′ with (P ; Q) ∈ G′, hence G′ is not equivalent to H. However, it 
is clear that deleting BC from G′ yields H ′′ ∼ H. It follows, then, that in the case in 
which e is contracted, we have G′ such that [G] > [G′] > [H], and hence [G] does not 
cover [H].

For the case in which we delete e = ZC in T , the argument is similar. �
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Theorem 3.2.4. EPn is graded by number of edges of critical representatives.

Proof. First, by Theorem 2.3.6, note that for any [G] ∈ EPn, all critical representatives 
of [G] have the same number of edges. Now, we need to show that if [G] covers [H], the 
number of edges in a critical representative of [G] is one more than the same number for 
[H]. Let G ∈ [G] be critical. By Proposition 3.2.1, an edge of G may be contracted or 
deleted to yield a critical representative H ∈ [H], and it is clear that H has one fewer 
edge than G. �
Definition 3.2.5. For all non-negative integers r, denote the set of elements of EPn of 
rank r by EPn,r.

3.3. Toward Eulerianness

In this section, we state various conjectured properties of EPn, related to Eulerianness. 
First, we show that EPn is Eulerian in intervals of length 2.

Lemma 3.3.1. Suppose x ∈ EPn,r−1, z ∈ EPn,r+1 with x < z. Then, there exist exactly 
two y ∈ EPn,r with x < y < z.

Proof. Take x and z to be (equivalence classes of) lensless medial graphs. By Theo-
rem 3.2.4, x may be obtained from z by a sequence of two legal resolutions of crossings. 
One checks that, in all cases, there are exactly two ways to get from x to z in this way. 
The details are omitted. �
Conjecture 3.3.2. EPn is lexicographically shellable, and hence Cohen–Macaulay, spher-
ical, and Eulerian.

Refer to [2] for definitions. Indeed, if we have an L-labeling for EPn, it would follow 
that the order complex Δ(EPn) is shellable and thus Cohen–Macaulay (see [2, Theo-
rem 3.4, Theorem 5.4(C)]). By Lemma 3.3.1, [1, Proposition 4.7.22] would apply, and we 
would conclude that EPn is spherical and hence Eulerian.

Using [20], EPn has been verified to be Eulerian for n ≤ 7, and the homology of 
EPn − {0̂, ̂1} agrees with that of a sphere of the correct dimension, 

(
n
2
)
− 2, for n ≤ 4. 

On the other hand, no L-labeling of EPn is known for n ≥ 4.

4. Enumerative properties

We now investigate the enumerative properties of EPn, defined in Section 3. In the 
sections that follow, all wiring diagrams are assumed to be lensless, and are considered 
up to motion-equivalence.
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4.1. Total size Xn = |EPn|

In this section, we adapt methods of [3] to prove the first two enumerative results 
concerning |EPn|, the number of equivalence classes of critical graphs (equivalently, full 
wiring diagrams) of order n. There is an analogy between the stabilized-interval free (SIF) 
permutations of [3] and medial graphs, as follows. A permutation σ may be represented 
as a 2-regular graph Σ embedded in a disk with n boundary vertices. Then, σ is SIF if 
and only if there are no dividing lines, where here a dividing line is a line � between two 
boundary vertices such that no edge of Σ connects vertices on opposite sides of �.

To begin, we define two operations on wiring diagrams in order to build large wiring 
diagrams out of small, and vice versa. In both definitions, fix a lensless (but not neces-
sarily full) wiring diagram M of order n, with boundary vertices labeled V1, V2, . . . , Vn.

Definition 4.1.1. Let w = XY be a wire of M . Construct the crossed expansion of M
at w, denoted Mw

+,c, as follows: add a boundary vertex Vn+1 to M between V1 and Vn. 
Let A, B denote the medial boundary vertices associated to Vn+1, so that the medial 
boundary vertices A, B, X, Y appear in that order around the circle. Then, delete w
from M and replace it with the crossing wires AX, BY to form Mw

+,c. Similarly, define 
the uncrossed expansion of M at w, denoted Mw

+,u, to be the lensless wiring digram 
obtained by deleting w and replacing it with the non-crossing wires AY, BX.

Definition 4.1.2. Let Vi be a boundary vertex with associated medial boundary vertices 
A, B, such that we have the wires AX, BY ∈ M , and X �= B, Y �= A. Define the
refinement of M at Vi, denoted M i

−, to be the lensless wiring diagram of order n − 1
obtained by deleting the wires AX, BY as well as the vertices A, B, Vi, and adding the 
wire XY .

Each construction is well-defined up to equivalence under motions by Theorem 2.4.1. 
It is clear that expanding M , then refining the result at the appropriate vertex, recov-
ers M . Similarly, refining M , then expanding the result after appropriately relabeling 
the vertices, recovers M if the correct choice of crossed or uncrossed is made.

Lemma 4.1.3. Let M be a full wiring diagram, with boundary vertices V1, V2, . . . , Vn. 
Then:

(a) Mw
+,c is full for all wires w ∈ M .

(b) Either Mw
+,u is full, or otherwise Mw

+,u has exactly one dividing line, which must 
have Vn+1 as one of its endpoints.

Proof. First, suppose for sake of contradiction that Mw
+,c has a dividing line �. If � is of the 

form ViVn+1, then � must exit the sector formed by the two crossed wires coming out of 
the medial boundary vertices associated to Vn+1. If this is the case, we get an intersection 
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Fig. 4. M1 (dotted) and M2 (dashed), from M .

between M+,c and a wire, a contradiction. If instead, � = ViVj with i, j �= n + 1, then �
is a dividing line in M , also a contradiction. We thus have (a). Similarly, we find that 
any dividing line of Mw

+,u must have Vn+1 as an endpoint. However, if ViVn+1, Vi′Vn+1

are dividing lines, then ViVi′ is as well, a contradiction, so we have (b). �
Lemma 4.1.4. Let M be a full wiring diagram, with boundary vertices V1, V2, . . . , Vn. 
Furthermore, suppose Mn

− exists and is not full. Then, Mn
− has a unique dividing line 

ViVj with 1 ≤ i < j ≤ n − 1 and j − i maximal.

Proof. By assumption, Mn
− has a dividing line, so suppose for sake of contradiction that 

�1 = Vi1Vj1 , �2 = Vi2Vj2 are both dividing lines of M ′ with d = j1− i1 = j2− i2 maximal. 
Without loss of generality, assume i1 < i2 (and i1 < j1, i2 < j2). If j1 ≥ i2, then Vi1Vj2

is also a dividing line with j2 − i1 > d, a contradiction. On the other hand, if j1 < i2, at 
least one of �1, �2 is a dividing line for M , again a contradiction. �

If M, i, j are as above, we now define two wiring diagrams M1 and M2; see Fig. 4 for 
an example. First, let M1 be the result of restricting M to the wires associated to the 
vertices Vk, for k ∈ [i, j] ∪ {n}. Note that M1 is a wiring diagram of order j − i + 1 with 
boundary vertices Vi, Vi+1, . . . , Vj (and not Vn). Then, let M2 be the wiring diagram of 
order n − (j − i + 1) obtained by restricting M to the wires associated to the vertices 
Vk, for k /∈ [i, j] ∪ {n}.

Lemma 4.1.5. M1 and M2, as above, are full.

Proof. It is not difficult to check that any dividing line of M1 must also be a dividing 
line of M , a contradiction. A dividing line Vi′Vj′ of M2 must also be a dividing line of 
Mn

−, but then j′ − i′ > j − i, contradicting the maximality from Lemma 4.1.4. �
We are now ready to prove the main theorem of this section.
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Theorem 4.1.6. Put Xn = |EPn|, which here we take to be the number of full wiring 
diagrams of order n. Then, X1 = 1, and for n ≥ 2,

Xn = 2(n− 1)Xn−1 +
n−2∑
k=2

(k − 1)XkXn−k.

Proof. X1 = 1 is obvious. For n > 1, we would like to count the number of full wiring 
diagrams M of order n, whose boundary vertices are labeled V1, V2, . . . , Vn, in clockwise 
order, with medial boundary vertices Ai and Bi at each vertex, so that the order of 
points on the circle is Ai, Vi, Bi in clockwise order. If AnBn is a wire, constructing the 
rest of M amounts to constructing a full wiring diagram of order n − 1, so there are 
Xn−1 such full wiring diagrams in this case.

Otherwise, consider the refinement Mn
−. All M for which Mn

− is full can be obtained 
by expanding at one of the n − 1 wires of a full wiring diagram M ′ of order n − 1. By 
Lemma 4.1.3, the expanded wiring diagram is full unless it has exactly one dividing line 
VkVn, and furthermore it is easy to see that any such graphs is an expansion of a full 
wiring diagram of order n − 1.

There are 2(n − 1) ways to expand M ′, and each expansion gives a different wiring 
diagram of order n, for 2(n − 1)Xn−1 total expanded wiring diagrams. However, by the 
previous paragraph, the number of these which are not full is 

∑n−1
k=1 XkXn−k, as imposing 

a unique dividing line VkVn forces us to construct two full wiring diagrams on either side, 
of orders k, n − k respectively. Thus, we have 2(n − 1)Xn−1 −

∑n−1
k=1 XkXn−k full wiring 

diagrams of order n such that refining at Vn gives another full wiring diagram.
It is left to count those M such that contracting at Vn leaves a non-full wiring dia-

gram M ′. By Lemma 4.1.5, such an M gives us a pair of full wiring diagrams of orders 
i +j+1, n −(i +j+1), where ViVj is as in Lemma 4.1.4. Conversely, given a pair of bound-
ary vertices Vi, Vj �= Vn of M and full wiring diagrams of orders j− i + 1, n − (j− i + 1), 
we may reverse the construction M �→ (M1, M2) to get a wiring diagram of order n: 
furthermore, it is not difficult to check that this wiring diagram is full.

It follows that the number of such M is

∑
1≤i<j≤n−1

Xj−i+1Xn−(j−i+1) =
n−2∑
k=1

kXkXn−k.

Summing our three cases together, we find

Xn = Xn−1 + 2(n− 1)Xn−1 −
n−1∑
k=1

XkXn−k +
n−2∑
k=1

kXkXn−k

= 2(n− 1)Xn−1 +
n−2∑
k=2

(k − 1)XkXn−k,

using the fact that X1 = 1. The theorem is proven. �
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Remark 4.1.7. The sequence {Xn} is A111088 in the OEIS [14].

We also have an analogue of the other main result of [3]; the method of proof can be 
readily mimicked.

Theorem 4.1.8. Let X(t) =
∑∞

n=0 Xnt
n be the generating function for the sequence {Xn}, 

where we take X(0) = 1. Then, we have [tn−1]X(t)n = n · (2n − 3)!!.

4.2. Asymptotic behavior of Xn = |EPn|

In this section, we adapt methods from [21] to prove:

Theorem 4.2.1. We have

lim
n→∞

Xn

(2n− 1)!! = 1√
e
.

In other words, the density of full wiring diagrams in the set of all wiring diagrams is 
e−1/2. A key ingredient in the proof is the following:

Lemma 4.2.2. For n ≥ 6, (2n − 1)Xn−1 < Xn < 2nXn−1.

Proof. See Appendix A. �
To prove Theorem 4.2.1, we will estimate the number of non-full wiring graphs of 

order n. Let Dn denote the number of wiring diagrams formed in the following way: for 
1 ≤ j ≤ n −2, choose j pairs of adjacent boundary vertices, and for each pair, connect the 
two medial boundary vertices between them. Then, with the remaining 2n − 2j vertices, 
form a full wiring diagram of order n − j, which in particular has no dividing lines whose 
endpoints are adjacent boundary vertices. It is clear that all such diagrams are non-full.

For completeness, we will also include in our count the wiring diagram where all pairs 
of adjacent boundary vertices give dividing lines, but because we are interested in the 
asymptotic behavior of Dn, this addition will be of no consequence. It is easily seen that

Dn = 1 +
n−2∑
j=1

(
n

j

)
Xn−j .

Now, let En be the number of non-full wiring diagrams not constructed above. 
Consider the following construction: choose an ordered pair of distinct, non-adjacent 
boundary vertices on our boundary circle. Then, on each side of the directed segment, 
construct any wiring diagram. This construction yields

Yn = n
n−2∑
j=2

(2n− 2j − 1)!!(2j − 1)!!

total (not necessarily distinct) wiring diagrams, which clearly overcounts En.
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We now state two additional lemmas, whose proofs are purely analytic and may be 
found in Appendix A.

Lemma 4.2.3. Dn/Xn → √
e− 1 as n → ∞.

Lemma 4.2.4. Yn/Xn → 0 as n → ∞.

From here, we will be able to establish the desired asymptotic.

Proof of Theorem 4.2.1. Xn, Dn, and En together count the total number of wiring 
diagrams, which is equal to (2n − 1)!!. Thus,

(2n− 1)!!
Xn

= Xn + Dn + En

Xn
→ 1 + (

√
e− 1) + 0 = e1/2,

assuming Lemmas 4.2.3 and 4.2.4 (we have Yn/Xn → 0, so En/Xn → 0 as well), so the 
desired conclusion is immediate from taking the reciprocal. �

Let us summarize now the results of the last two sections:

Theorem 4.2.5.

(a) X1 = 1 and

Xn = 2(n− 1)Xn−1 +
n−2∑
k=2

(k − 1)XkXn−k.

(b) [tn−1]X(t)n = n · (2n − 3)!!, where X(t) is the generating function for the sequence 
{Xi}.

(c) Xn/(2n − 1)!! → e−1/2 as n → ∞.

To conclude this section, we propose the following generalization of Theorem 4.2.5:

Conjecture 4.2.6. Let λ �= 0 be a real number. Consider the sequence {Xn,λ} defined by 
X0,λ = X1,λ = 1, and

Xn = λ(n− 1)Xn−1,λ +
n−2∑
k=2

(k − 1)Xk,λXn−k,λ.

Let Xλ(t) be the generating function for the sequence {Xn,λ}. Then,
[
tn−1]Xλ(t)n = n · (1/λ)n

and



76 J. Alman et al. / Journal of Combinatorial Theory, Series A 132 (2015) 58–101
lim
n→∞

Xλ,n

(1/λ)n
= 1

n
√
e
,

where (a)n = a(a + 1) · · · (a + n − 1).

For λ ∈ Z, a proof exhibiting and exploiting a combinatorial interpretation for the 
sequence {Xn,λ} would be most desirable, as we have done for λ = 2. However, no such 
interpretation is known for λ > 2. The case λ = 1 is handled in [3] and [18, §3], though 
the latter does not use the interpretation of Xn,1 as SIF permutations of [n] to obtain 
the asymptotic.

Interestingly, if we define Xn,−1 analogously, we get Xn,−1 = (−1)n+1Cn, where Cn

denotes the n-th Catalan number, see [14].

4.3. Rank sizes |EPn,r|

Proposition 4.3.1. For non-negative c ≤ n − 2, we have |EPn,
(n
2
)
−c| =

(
n−1+c

c

)
. Further-

more, |EPn,
(n
2
)
−(n−1)| =

(2n−2
n−1

)
− n.

Proof. For convenience, put N =
(
n
2
)
. We claim that for c ≤ n − 2, any wiring diagram 

of order n with N − c crossings is necessarily full. Thus, for c ≤ n − 2, it suffices to 
compute the number of circular wiring diagrams with N − c crossings. By [17, (1)] and 
[17, p. 218], this number is 

(
n+c−1
n−1

)
for c ≤ n − 1. This immediately gives the desired 

result for c ≤ n − 2, and from here the case c = n − 1 may be handled easily. �
Proposition 4.3.1 gives an exact formula for |EPn,r| for r large, but no general formula 

is known for general r. To conclude this section, we cannot resist making the following 
conjecture, which has been verified up to n = 8.

Conjecture 4.3.2. EPn is rank-unimodal.

5. Electrical positroids

By Theorem 2.2.6, n × n response matrices are characterized in the following way: 
a square matrix M is the response matrix for an electrical network (Γ, γ) if and only 
if M is symmetric, its row and column sums are zero, and its circular minors M(P ; Q)
are non-negative. Furthermore, M(P ; Q) is positive if and only if there is a connection 
from P to Q in Γ . The sets S of circular pairs for which there exists a response matrix 
M with M(P ; Q) is positive if and only if (P ; Q) ∈ S, then, are thus our next objects of 
study.

The case of the totally nonnegative Grassmannian was studied in [16]: for k×n (with 
k < n) matrices with non-negative maximal minors, the possible sets of positive maximal 
minors are called positroids, and are a special class of matroids. Our objects will be called 
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electrical positroids, which we first construct axiomatically, then prove are exactly those 
sets S of positive circular minors in response matrices.

5.1. Grassmann–Plücker relations and electrical positroid axioms

Here, we present the axioms for electrical positroids, which arise naturally from the 
Grassmann–Plücker relations.

Definition 5.1.1. Let M be a fixed matrix, whose rows and columns are indexed by some 
sets I, J . We write Δi1i2···im,j1j2···jn for the determinant of the matrix M ′ formed by 
deleting the rows corresponding to i1, i2, . . . , im ∈ I and j1, j2, . . . , jn ∈ J , provided M ′

is square.

While the meaning Δi1i2···im,j1j2···jn depends on the underlying sets I, J , these sets 
will always be implicit.

Proposition 5.1.2. We have the following two Grassmann–Plücker relations.

(a) Let M be an n × n matrix, with a, b elements of its row set and c, d elements of its 
column set. Furthermore, suppose that the row a appears above row b and column c
appears to the left of column d. Then,

Δa,cΔb,d = Δa,dΔb,c + Δab,cdΔ∅,∅. (5.1.1)

(b) Let M be an (n +1) ×n matrix, with a, b, c elements of its row set (appearing in this 
order, from top to bottom), and let d an element of its column set. Then,

Δb,∅Δac,d = Δa,∅Δbc,d + Δc,∅Δab,d. (5.1.2)

While the Grassmann–Plücker relations are purely algebraic in formulation, they en-
code combinatorial information concerning the connections of circular pairs in a circular 
planar graph Γ . As a simple example, consider four boundary vertices a, b, d, c in clock-
wise order of an electrical network (Γ, γ), and let π = π(Γ ). If M is the response matrix 
of (Γ, γ), then M ′ = M({a, b}, {c, d}) is the circular minor associated to the circular pair 
(a, b; c, d); thus, M ′ has non-negative determinant. Furthermore, the entries of M ′ are 
1 × 1 circular minors of M , so they, too, must be non-negative.

Now, suppose that the left hand side of (5.1.1) is positive, that is, Δa,cΔb,d > 0. 
Equivalently, there are connections between b and d and between a and c in Γ . Then, at 
least one of the two terms on the right hand side must be strictly positive; combinatori-
ally, this means that either there are connections between b and c and between a and d, 
or there is a connection between {a, b} and {c, d}. One can derive similar combinatorial 
rules by assuming one of the terms on the right hand side is positive, and deducing that 
the left hand side must be positive as well.
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The first six of the electrical positroid axioms given in Definition 5.1.3 summarize 
all of the information that can be extracted in this way from the Grassmann–Plücker 
relations.

We will require a few pieces of notation. If a ∈ P , write P − a for the ordered set 
formed by removing a from P . If a /∈ P = {a1, a2, . . . , aN}, write P + a for the ordered 
set formed by adding a to the end of P . Note that this implies we can only add a to P
if aN , a, a1 lie in clockwise order on the circle.

Definition 5.1.3. A set S of circular pairs is an electrical positroid if it satisfies the 
following eight axioms:

1. For ordered sets P = {a1, a2, . . . , aN} and Q = {b1, b2, . . . , bN}, with a1, . . . , aN ,

bN , . . . , b1 in clockwise order (that is, (P ; Q) is a circular pair), consider any a = ai, 
b = aj , c = bk, d = b� with i < j and k < �. Then:
(a) If (P −a; Q − c), (P − b; Q −d) ∈ S, then either (P −a; Q −d), (P − b; Q − c) ∈ S

or (P − a − b; Q − c − d), (P ; Q) ∈ S.
(b) If (P − a; Q − d), (P − b; Q − c) ∈ S, then (P − a; Q − c), (P − b; Q − d) ∈ S.
(c) If (P − a − b; Q − c − d), (P ; Q) ∈ S, then (P − a; Q − c), (P − b; Q − d) ∈ S.

2. For P = {a1, a2, . . . , aN+1} and Q = {b1, b2, . . . , bN}, with a1, a2, . . . , aN+1, bN , . . . , b1
in clockwise order, consider any a = ai, b = aj , c = ak, d = b� with i < j < k. Then:
(a) If (P − b; Q), (P −a − c; Q −d) ∈ S, then either (P −a; Q), (P − b − c; Q −d) ∈ S

or (P − c; Q), (P − a − b; Q − d) ∈ S.
(b) If (P − a; Q), (P − b − c; Q − d) ∈ S, then (P − b; Q), (P − a − c; Q − d) ∈ S.
(c) If (P − c; Q), (P − a − c; Q − d) ∈ S, then (P − b; Q), (P − a − c; Q − d) ∈ S.

Finally:

3. (Subset axiom) For P = {a1, a2, . . . , an} and Q = {b1, b2, . . . , bn} with (P ; Q) a cir-
cular pair, if (P ; Q) ∈ S, then (P − ai; Q − bi) ∈ S.

4. (∅; ∅) ∈ S.

5.2. The main theorem

We now state the main theorem relating electrical positroids and electrical networks, 
and sketch the proof. Full details are given in Appendix B.

Theorem 5.2.1. A set S of circular pairs is an electrical positroid if and only if there 
exists a response matrix whose positive circular minors are exactly those corresponding 
to S.

Proof. Given a response matrix M , it is straightforward to check that the set S of circular 
pairs corresponding to the positive circular minors of M satisfies the first six axioms, by 
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Proposition 5.1.2. S also satisfies the Subset axiom, by Theorem 2.2.6. Finally, adopting 
the convention that the empty determinant is equal to 1, we have the last axiom. To 
prove Theorem 5.2.1, we thus need to show that any electrical positroid S may be 
realized as the set of positive circular minors of a response matrix, or equivalently the 
set of connections in a circular planar graph.

Fix a boundary circle with n boundary vertices, which we label 1, 2, . . . , n in clockwise 
order. We have shown, via the Grassmann–Plücker relations, that the set of circular 
pairs corresponding to the positive circular minors of a response matrix is an electrical 
positroid. We now prove that, for all electrical positroids S, there exists a critical graph 
G for which π(G) = S, which will establish Theorem 5.2.1. The idea of the argument is 
as follows.

Assume, for sake of contradiction, that there exists some electrical positroid S for 
which there does not exist such a critical graph G with π(G) = S. Then, let S0 have 
maximal size among all such electrical positroids. Note that S0 does not contain all 
circular pairs (P ; Q), because otherwise S0 = π(Gmax), where Gmax denotes a critical 
representative of the top-rank element of EPn.

We will then add circular pairs to S0 according to the boundary edge and boundary 
spike properties (cf. [4, §4]), as defined below, to form an electrical positroid S1. By the 
maximality of S0, S1 = π(G1) for some critical graph G1. We will then delete a boundary 
edge or contract a boundary spike in G1 to obtain a graph G0, with S′

0 = π(G0), and 
show that π(G0) = S0.

Definition 5.2.2. A set S of circular pairs is said to have the (i, i + 1)-BEP (boundary 
edge property) if, for all circular pairs (P ; Q) ∈ S, if (P + i; Q + (i + 1)) is a circular 
pair, then (P + i; Q + (i + 1)) ∈ S. A set S of circular pairs is said to have the i-BSP 
(boundary spike property) if, for any circular pairs (P ; Q) ∈ S and x, y such that (P +x;
Q + i), (P + i; Q + y) ∈ S, we have (P + x; Q + y) ∈ S.

It is easy to see that the properties we defined correspond to graphs having a boundary 
edge or boundary spike. We next have the following lemma:

Lemma 5.2.3. If S has all n BEPs and all n BSPs, then S contains all circular pairs.

Proof. We proceed by induction on the size of (P ; Q) that (P ; Q) ∈ S for all circular 
pairs (P ; Q). First, suppose that |P | = 1. First, (i; i + 1) ∈ S for all i, because it has 
all BEPs and (∅; ∅) ∈ S. Then, because S has the i-BSP, and (i − 1; i), (i; i + 1) ∈ S we 
obtain (i − 1; i + 1) ∈ S. Continuing in this way gives that S contains all circular pairs 
(P ; Q) with |P | = 1.

Now, suppose that S contains all circular pairs of size k−1. Let (a1, . . . , ak; b1, . . . , bk)
be a circular pair of size k. By assumption, (a2, . . . , ak; b2, . . . , bk) ∈ S. Because S has all 
BEPs, (b1 +1, a2, . . . , ak; b1, b2, . . . , bk) ∈ S and (b1 +2, a2, . . . , ak; b1 +1, b2, . . . , bk) ∈ S, 
so by the (b1+1)-BSP, (b1 +2, a2, . . . , ak; b1, b2, . . . , bk) ∈ S. Continuing in this way gives 
(a1, . . . , ak; b1, . . . , bk) ∈ S, so we have the desired claim. �
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Lemma 5.2.3 tells us that we may assume S0 does not have all BEPs and BSPs. We 
first assume that S0 does not have some BEP, without loss of generality the (n, 1)-BEP. 
We will now add circular pairs to S0 to obtain an electrical positroid S1 that does have 
the (n, 1)-BEP. Specifically, we add to S0 every circular pair (P + 1; Q + n), where 
(P ; Q) ∈ S0 has 1 < a1 < b1 < n (here P = {a1, . . . , ak}, Q = {b1, . . . , bk}), to obtain S1. 
It is easy to check that S1 is an electrical positroid.

By assumption, S0 is the maximal electrical positroid for which any circular planar 
graph G has π(G) �= S0. Thus, there exists a graph G1 be a graph such that π(G1) = S1, 
and G1 may be taken to have a boundary edge (n, 1). Then, let G0 be the result of 
deleting the boundary edge (n, 1), and S′

0 = π(G0). To obtain a contradiction, it is 
enough to prove that S0 = S′

0.
We first give a definition.

Definition 5.2.4. Consider a circular pair (P ; Q) ∈ S0 for which 1, n /∈ P ∪ Q. We will 
assume, for the rest of this section, that (P + 1; Q + n) is a circular pair. (P ; Q) is said 
to be is incomplete if (P + 1; Q + n) /∈ S0, and complete if (P + 1; Q + n) ∈ S0.

Then, the first step in proving S0 = π(G0) lies in the following lemma:

Lemma 5.2.5. For any two incomplete circular pairs (P ; Q) and (P ′; Q′), any electrical 
positroid Z satisfying S0 ∪{(P +1; Q +n)} ⊂ Z ⊂ S1 must also contain (P ′ +1; Q′ +n).

The idea of the proof is to apply the axioms repeatedly, but the details are cumber-
some, so we defer this pursuit to Appendix B. Then, by the above result, if we start 
with our set S0 and some incomplete circular pair (P ; Q) ∈ S0, “completing” (P ; Q) by 
adding (P + 1; Q + n) to S0 will require that we have completed every incomplete pair. 
We now finish the proof of Theorem 5.2.1, in the boundary edge case.

Let T0 ⊂ S0 denote the subset of circular pairs in S0 without the connection (1, n), 
and define T1, T ′

0 similarly for S1, S′
0, respectively. By construction, it is easily seen that 

T0 = T1 = T ′
0. While T0 may not necessarily be an electrical positroid, we have:

Lemma 5.2.6. There exists an electrical positroid T with T0 ⊂ T ⊂ S0 ∩ S′
0.

Proof. Deferred to Appendix B. �
We now complete the proof of the main theorem.
By Lemma 5.2.5, we must in fact have S0 = T = S′

0, provided that neither S0 nor 
S′

0 is equal to S1, which is true by construction (recall that G′
0 is critical). The proof is 

complete, in the boundary edge case.
It is left to consider the case in which S0 has the (i, i + 1)-BEP, for each i, but fails 

to have the i-BSP, for some i. Without loss of generality, suppose that S0 does not 
have the 1-BSP. We now form S1 as the union of S0 and the set of all circular pairs 
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(P + x; Q + y) such that (P + x; Q + 1), (P + 1, Q + y) ∈ S0, where (P ; Q) is a circular 
pair with 1, x /∈ P, 1, y /∈ Q.

As in the boundary edge case, we form a circular planar graph G1 such that π(G1) =
S1 and G1 has a boundary spike at 1. Then, contracting this boundary spike to obtain 
the graph G0, we find that π(G0) = S0. The details are the same as in the boundary 
edge case, so they are omitted. �
6. The LP algebra LMn

We now study the LP Algebra LMn. Our starting point will be positivity tests; a par-
ticular positivity test will form the initial seed in LMn. We then proceed to investigate
the algebraic and combinatorial properties of clusters in LMn.

6.1. Positivity tests

Let M be a symmetric n ×n matrix with row and column sums equal to zero. In this 
section, we describe tests for deciding if M is the response matrix for an electrical network 
Γ in the top cell of EPn. That is, we describe tests for deciding if all of the circular 
minors of M are positive. These tests are similar to certain tests for total positivity 
described in [8]. Throughout the remainder of this section, all indices around the circle 
are considered modulo n, and we will refer to circular pairs and their corresponding 
minors interchangeably.

Definition 6.1.1. A set S of circular pairs is a positivity test if, for all matrices M
whose minors corresponding to S are positive, every circular minor of M is positive 
(equivalently, M is the response matrix for a top-rank electrical network).

We begin by describing a positivity test of size 
(
n
2
)
. Fix n vertices on a boundary 

circle, labeled 1, 2, . . . , n in clockwise order.

Definition 6.1.2. For two points a, b ∈ [n], let d(a, b) denote the number of boundary 
vertices on the arc formed by starting at a and moving clockwise to b, inclusive.

Definition 6.1.3. A circular pair (P ; Q) = (p1, · · · , pk; q1, · · · , qk) is called solid if both 
sequences p1, . . . , pk and q1, . . . , qk appear consecutively in clockwise order around the 
circle. Write d1 = d1(P ; Q) = d(pk, qk), and d2 = d2(P ; Q) = d(q1, p1). We will call a 
solid circular pair (P ; Q) picked if one of the following conditions holds:

• d1 ≤ d2 and 1 ≤ p1 ≤ n
2 , or

• d1 ≥ d2 and 1 ≤ qk ≤ n
2

Definition 6.1.4. Let M be a fixed symmetric n × n matrix. Define the set of diametric 
pairs Dn to be the set of solid circular pairs (P ; Q) such that either |d1 − d2| ≤ 1 or 
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|d1 − d2| = 2 and (P ; Q) is picked. We will refer to the elements of Dn as circular pairs 
and minors interchangeably.

It is easily checked that |Dn| =
(
n
2
)
.

Remark 6.1.5. For a solid circular pair (P ; Q), we have that |d1 − d2| ≡ n (mod 2), so 
Dn consists of the solid circular pairs with |d1 − d2| = 1 when n is odd, and the solid 
circular pairs with either |d1 − d2| = 0, or |d1 − d2| = 2 and (P ; Q) is picked when n is 
even.

Recall (see Remark 2.2.2) that the circular pairs (P ; Q) and (Q̃; P̃ ) will be regarded 
as the same. Note, for example, that (P ; Q) ∈ Dn if and only if (Q̃; P̃ ) ∈ Dn, so the 
definition of Dn is compatible with this convention.

Proposition 6.1.6. If M is taken to be an n × n symmetric matrix of indeterminates, 
any circular minor is a positive rational expression in the determinants of the elements 
of Dn.

Proof. See [10, Theorem 4.12]. �
Corollary 6.1.7. Dn is a positivity test.

6.2. CMn and LMn

The positive rational expressions from the previous section are reminiscent of a cluster 
algebra structure (see [7, §3] for definitions). In fact, (5.1.1) and (5.1.2) are exactly the 
exchange relations for the local moves in double wiring diagrams [8, Fig. 9]. Due to parity 
issues similar to those encountered when attempting to associate a cluster algebra to a 
non-orientable surface in [6], the structure of positivity tests is slightly different from 
a cluster algebra. We present the structure in two different ways: first, as a Laurent 
phenomenon (LP) algebra LMn (see [12, §2,3] for definitions), and secondly as a cluster 
algebra CMn similar to the double cover cluster algebra in [6]. LMn, we will find, is 
isomorphic to the polynomial ring on 

(
n
2
)

variables, but more importantly encodes the 
information of the positivity of the circular minors of a fixed n × n matrix.

We begin by describing an undirected graph Un that encodes the desired mutation 
relations among our initial seed. The vertex set of Un will be Vn = Dn ∪ {(∅; ∅)}.

Definition 6.2.1. A solid circular pair (p1, . . . , pk; q1, . . . , qk) is called maximal if 2k+2 > n

or 2k+ 2 = n and d1 = d2. A solid circular pair (P ; Q) = (p1, . . . , pk; q1, . . . , qk) is called
limiting if |d1 − d2| = 2, (P ; Q) is picked, and 1 = p1 or 1 = qk.

Let us now describe the edges of Un: see Fig. 5 for an example. For each (P ; Q) ∈ Vn

that is not maximal, limiting, or empty (that is, equal to (∅; ∅)), there is a unique way to 
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Fig. 5. The graph U8 depicting the desired exchange relations among D8. Vertices marked as squares corre-
spond to frozen variables. (4; 8), (45; 18) and (812; 654) are the limiting circular pairs.

substitute values in (5.1.1) such that (P ; Q) appears on the left hand side, and all four 
terms on the right hand side are in Vn. We draw edges from (P ; Q) to these four vertices 
in Un. Finally, if (P ; Q), (R; S) ∈ Vn are limiting, we draw an edge between them if their 
sizes differ by 1. The edges drawn in these two cases constitute all edges of Vn.

For any maximal circular pair (P ; Q), it can be proven that there exists a symmetric 
matrix A such that A is positive on any circular pair except A(P ; Q) ≤ 0. In fact, if (P ; Q)
is maximal and has |d1 − d2| ≤ 1, then the set of all circular pairs other than (P ; Q) is 
an electrical positroid. Hence, in our quivers, we will take the vertices corresponding to 
the maximal circular pairs and (∅; ∅) to be frozen.

Un can then be embedded in the plane in a natural way with the circular pairs of size 
k lying on the circle of radius k centered at (∅; ∅), and all edges either along those circles 
or radially outward from (∅; ∅), except for the edges between vertices corresponding to 
limiting circular pairs. Fig. 5 demonstrates this embedding for n = 8.

If we could orient the edges of Un such that they alternate between in- and out-edges 
at each non-frozen vertex, then the resulting quiver would give a cluster algebra such 
that mutations at vertices whose associated cluster variables are neither frozen not lim-
iting correspond to the relation Grassmann–Plücker relation (5.1.1). Furthermore, these 
mutation relations among the vertices of Vn constitute all of the Grassmann–Plücker 
relations for which five of the six terms on the right hand side are elements in Vn, and 
the term which is not in Vn is on the left hand side of the relation (5.1.1) or (5.1.2). 
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However, for n ≥ 5, such an orientation of the edges of Un is impossible, because the 
dual graph of Un contains odd cycles. We thus define:

Definition 6.2.2. Let LMn be the LP algebra constructed as follows: the initial seed Sn

has cluster variables equal to the minors in Vn, with the maximal pairs and (∅; ∅) frozen, 
and, for any other (P ; Q) ∈ Vn, the exchange polynomial F(P ;Q) is the same as what is 
obtained from a quiver with underlying graph Un, such that the edges around the vertex 
associated to (P ; Q) in Un alternate between in- and out-edges.

For example, in LM8, the exchange polynomial associated to the cluster variable 
x(12;54) is x(45;18)x(12;65)+x(1;5)x(812;654). We need the additional technical condition that 
F(P ;Q) is irreducible as a polynomial in the cluster variables Vn, but the irreducibility is 
clear.

We next define a cluster algebra CMn which is a double cover of positivity tests, in 
the following sense: we begin by considering an n × n matrix M ′, which we no longer 
assume to be symmetric. We write non-symmetric circular pairs in the row and column 
sets of M ′ as (P ; Q)′, so that (P ; Q)′ and (Q̃; P̃ )′ now represent different circular pairs. 
We will say that two expressions A, B in the entries of M ′ correspond if swapping the 
rows and columns for each entry in A gives B, and we will write B = c(A). For instance, 
(P ; Q)′ = c((Q; P )′). c is be analogously defined on index sets.

The set of cluster variables V ′
n in our initial seed will consist of pairs (P ; Q)′ such 

that (P ; Q) ∈ Vn. Note that |V ′
n| = 2

(
n
2
)
+ 1, as V ′

n contains (P ; Q)′ and (Q̃; P̃ )′ for each 
(P ; Q) ∈ Dn, and finally (∅; ∅). (P ; Q)′ will be frozen in V ′

n if (P ; Q) was frozen in Vn.
We construct the undirected graph U ′

n with vertex set V ′
n by adding edges in the 

same way that Un was constructed. The only difference in our description is that if 
(P ; Q), (R; S) ∈ Vn are limiting, then they will be adjacent only if their sizes differ by 1
and P ∩R �= ∅. See Fig. 6 for an example.

Unlike in Un, the edges of U ′
n can be oriented such that they are alternating around 

each non-frozen vertex. Let Qn be the quiver from either orientation. Then, let CMn be 
the cluster algebra with initial quiver Qn.

Breaking the symmetry of M ′ removed the parity problems from Un, so that we could 
define a cluster algebra, but we are still interested in using U ′

n to study M when M is 
symmetric. Toward this goal, we can restrict ourselves so that whenever we mutate at 
a cluster variable v, we then mutate at c(v) immediately afterward. Call this restriction 
the symmetry restriction.

Lemma 6.2.3. After the mutation sequence μx1 , μc(x1), μx2 , μc(x2), . . . , μxr
, μc(xr) from the 

initial seed in CMn, the number of edges from x to y in the quiver is equal to the number 
of edges from c(y) to c(x) for each x, y in the final quiver.

Proof. We proceed by induction on r; for r = 0, we have the claim by construction. Now, 
suppose that we have performed the mutations μx1 , μc(x1), μx2 , μc(x2), . . . , μxr−1 , μc(xr−1)
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Fig. 6. The graph U ′
5. In the quiver Qn, edges alternate directions around a non-frozen vertex.

and currently have the desired symmetry property. By the inductive hypothesis, xr and 
c(xr) are not adjacent, or else we would have had edges between them in both directions, 
which would have been removed after mutations. Thus, no edges incident to c(xr) are 
created or removed upon mutating at xr. Hence, mutating at c(xr) afterward makes the 
symmetric changes to the graph, as desired. �
Definition 6.2.4. Let C[M ] and C[M ′] denote the polynomial rings in the off-diagonal 
entries of M and M ′ respectively; recall that M is symmetric, so Mij = Mji. Then, we 
can define the symmetrizing homomorphism C : C[M ′] → C[M ] by its action on the 
off-diagonal entries of M ′:

C
(
M ′

ij

)
= C

(
M ′

ji

)
= Mij .

It is the homomorphism induced by the inclusion of the polynomial ring on the entries 
of symmetric matrices into that of all matrices. If S is a set of polynomials in C[M ′], 
then write C(S) = {C(s) | s ∈ S}.

Lemma 6.2.5. Let L′
1 be the cluster of CMn that results from starting at the initial cluster 

and performing the sequence of mutations μx1 , μc(x1), μx2 , μc(x2), . . . , μxr
, μc(xr). Let L2

be the cluster of LMn that results from starting at the initial cluster and performing the 
sequence of mutations μx1 , μx2 , . . . , μxr

. Then, C(L′
1) = L2.
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Proof. Using Lemma 6.2.3, the proof is similar to [12, Proposition 4.4]. �
In light of Lemma 6.2.5, we may understand the clusters in LMn by forming “double-

cover” clusters in CMn. A sequence μ of mutations in LMn corresponds to a sequence 
μ′ of twice as many mutations in CMn, where we impose the symmetry restriction, and 
the cluster variables in LMn after applying μ are the symmetrizations of those in CMn

after applying μ′.

Lemma 6.2.6. Any cluster S of LMn consisting entirely of circular pairs is a positivity 
test.

Proof. In CMn, the exchange polynomial has only positive coefficients, so each variable 
in any cluster is a rational function with positive coefficients in the variables of any 
other cluster. In particular, each non-symmetric circular pair in Vn − (∅; ∅)′ is a rational 
function with positive coefficients in the variables of any cluster reachable under the 
symmetry restriction. Hence, by Lemma 6.2.5, each circular pair in Dn can be written 
as a rational function with positive coefficients of the variables in S. The desired result 
follows easily. �

As with double wiring diagrams for totally positive matrices [8], and plabic graphs for 
the totally nonnegative Grassmannian [16], we now restrict ourselves to certain types of 
mutations in LMn. A natural choice is mutations with exchange relations of the form 
5.1.1 or 5.1.2. These mutations keep us within clusters consisting entirely of circular 
minors, the “Plücker clusters.”

We begin by restricting ourselves only to mutations with exchange relations of the 
form 5.1.1. Because the initial seed Sn consists only of solid circular pairs, we will only be 
able to mutate to other clusters consisting entirely of solid circular pairs. Our goal is to 
characterize these clusters. We will be able to write down such a characterization using 
Corollary 6.2.15 and Lemma 6.2.5, and give a more elegant description of the clusters in 
Proposition 6.3.6.

Definition 6.2.7. Let (P ; Q)′ = (p1, . . . , pk; q1, . . . , qk)′ be a non-symmetric, non-empty 
circular pair. Define the statistics D(P ; Q)′, T (P ; Q)′, and k(P ; Q)′ by:

D(P ;Q)′ = d1(P ;Q)′ − d2(P ;Q)′ = d(pk, qk) − d(q1, p1)

T (P ;Q)′ =
{ p1+q1

2 (mod n) if p1 < q1
p1+q1+n

2 (mod n) if p1 > q1

k(P ;Q)′ = |P |, that is, the size of (P ;Q)′.

Remark 6.2.8. A non-symmetric solid circular pair (P ; Q)′ is uniquely determined by 
the triple (D(P ; Q)′, T (P ; Q)′, k(P ; Q)′). A necessary condition for a triple (D, T, k) to 
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correspond to a non-symmetric solid circular pair is that |D| + 2k ≤ n. When the terms 
are non-symmetric solid circular pairs, (5.1.1) can be written using these triples as:

(D − 2, T, k)(D + 2, T, k) = (D,T − 1/2, k)(D,T + 1/2, k)

+ (D,T, k + 1)(D,T, k − 1). (6.2.1)

Definition 6.2.9. We call two non-symmetric solid circular pairs corresponding to the 
triples (D1, T1, k1) and (D2, T2, k2) adjacent if T1 = T2 and |k1 −k2| = 1, or k1 = k2 and 
T1 − T2 ≡ ±1/2 (mod n). We call (P ; Q)′ and (R; S)′ diagonally adjacent if there are 
two non-symmetric solid circular pairs (A; B)′, (C; D)′ which are both adjacent to both 
(P ; Q)′ and (R; S)′. We call (A; B)′, (C; D)′ the connection of (P ; Q)′, (R; S)′.

Note that, in the initial quiver Qn, adjacent and diagonally adjacent circular pairs 
correspond to vertices which are adjacent in particular ways. Specifically, adjacent cir-
cular pairs correspond to vertices which are adjacent on the same concentric circle, or 
along the same radial spoke of U ′

n. Diagonally adjacent circular pairs correspond to those 
which are adjacent via all other edges, the “diagonal” edges. We can now classify clusters 
of CMn which can be reached only using the mutations with exchange relation (5.1.1).

Definition 6.2.10. We call a set S of 2
(
n
2
)

+ 1 non-symmetric solid circular pairs a solid 
cluster if it has the following properties:

• (∅; ∅)′ ∈ S,
• for each integer 1 ≤ k ≤ n

2 , and each T ∈ {0.5, 1, 1.5, 2, . . . , n}, unless k = n
2 and T is 

an integer, there is a D such that the non-symmetric solid circular pair corresponding 
to (D, T, k) is in S, and

• if (P ; Q)′, (R; S)′ ∈ S and (P ; Q)′ is adjacent to (R; S)′, then |D(P ; Q)′ −
D(R; S)′| = 2.

Remark 6.2.11. There is a natural embedding of a solid cluster S in the plane, similar 
to our embedding of U ′

n. We place (∅; ∅)′ at any point, and then pairs of size k on the 
circle of radius k centered at that point. Moreover, we place adjacent pairs of the same 
size consecutively around each circle, and adjacent pairs of different sizes collinear with 
(∅; ∅)′.

Definition 6.2.12. For a solid cluster S of CMn and associated quiver B, we call (S, B)
a solid seed if it has the following properties:

• vertices corresponding to maximal non-symmetric solid circular pairs are frozen,
• there is an edge between any pair of adjacent vertices that are not both frozen,
• there is an edge between diagonally adjacent vertices (P ; Q)′, (R; S)′ if their connec-

tion (A; B)′, (F ; G)′ satisfies |D(A; B)′ −D(F ; G)′| = 4,
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• there is an edge from a size 1 vertex (P ; Q)′ to (∅; ∅)′ if it would make the degree of 
(P ; Q)′ even,

• all edges of B are in drawn in one of the four ways described above, and
• all edges are oriented so that, in the embedding described in Remark 6.2.11, edges 

alternate between in- and out-edges around any non-frozen vertex.

If, furthermore, s ∈ S if and only if C(s) ∈ S, or equivalently, the non-symmetric 
solid circular pair corresponding to (D, T, k) is in S if and only if that corresponding to 
(−D, T, k) is, then we call (S, b) a symmetric solid seed.

See, for example, Fig. 7b.

Remark 6.2.13. In a solid seed (S, B), a variable (P ; Q)′ ∈ S has an exchange polynomial 
of the form (5.1.1) whenever its corresponding vertex in B, and has edges to the vertices 
corresponding to its four adjacent variables in B, and no other vertices.

Lemma 6.2.14. In CMn, from the initial seed with cluster V ′
n and quiver Q′

n, mutations 
of the form (5.1.1) may be applied to obtain the seed (W ′

n, R′
n) if and only if (W ′

n, R′
n)

is a solid seed. Here, we do not impose the symmetry restriction.

Proof. First, assume that (W ′
n, R′

n) can be obtained via mutations of the form (5.1.1). 
First, it is easy to check that (V ′

n, Q′
n) is a solid seed. Then, our mutations do indeed 

turn non-symmetric solid circular pairs into other non-symmetric solid circular pairs. 
Furthermore, when we perform a mutation of the form (6.2.1) at the vertex v, the values 
of T and k do not change, and the value of D changes from being either 2 more than 
the values of D at the vertices adjacent to v to being 2 less, or vice versa. Hence, the 
resulting seed is also solid, so, by induction, (W ′

n, R′
n) is solid.

Conversely, assume (W ′
n, R′

n) is solid. We begin by noting that, by Remark 6.2.13, 
whenever the four terms on the right hand side of (6.2.1) and one term on the left hand 
side are in our cluster, then we can perform the corresponding mutation.

Now, define (I ′n, QI ′
n) to be the unique symmetric solid seed such that, for each 

(P ; Q)′ ∈ I ′n, D(P ; Q)′ ∈ {−2, −1, 0, 1, 2}, like the one shown in Fig. 7a. For any solid 
seed (W ′

n, R′
n), we give a mutation sequence μ(W ′

n,R′
n) using only mutations of the form 

(6.2.1) that transforms (W ′
n, R′

n) into (I ′n, QI ′n). Hence, we will be able to get from the 
seed (V ′

n, Q′
n) to (W ′

n, R′
n) by performing μ(V ′

n,Q′
n), followed by μ(W ′

n,R′
n) in reverse order.

It is left to construct the desired mutation sequence. Again, we will be sure only to 
perform mutations described in Remark 6.2.13. We define μ(W ′

n,R′
n) as follows: while 

the current seed is not (I ′n, QI ′
n), choose a vertex v of the quiver, with associated clus-

ter variable (P ; Q)′, for which the value of |D(P ; Q)′| is maximized. We must have 
|D(P ; Q)′| > 2, and by maximality, for each vertex (R; S)′ adjacent to (P ; Q)′, we must 
have |D(R; S)′| = |D(P ; Q)′| − 2. Hence, we can mutate at (P ; Q) to reduce |D(P ; Q)′|
by at least 2. This process may be iterated to decrease the sum, over all cluster variables 
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(a) The graph U ′
5. In Qn, the edges alternate directions around each non-

frozen vertex. Compare to Fig. 6.

(b) The graph U ′
5 after a mutation at (1, 2.5, 1). In the quiver, the edges 

alternate directions around each non-frozen vertex.

Fig. 7. Example of a mutation on the graph U ′
5 with non-symmetric solid circular pairs labeled as triples 

(D, T, k).
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(P ; Q)′ in our seed, of the |D(P ; Q)′|, until we reach the seed (I ′n, QI ′
n). The proof is 

complete. �
Corollary 6.2.15. In CMn, from our initial seed with cluster V ′

n and quiver Q′
n, we can 

apply symmetric pairs of mutations (that is, mutations with the symmetry restriction) 
of the form (5.1.1) to obtain the seed (W ′

n, R′
n) if and only if (W ′

n, R′
n) is a symmetric 

solid seed.

Proof. The proof is almost identical to that of Lemma 6.2.14. It suffices to note that in a 
symmetric solid seed, (P ; Q)′ has a maximal value of |D| if and only if c(P ; Q)′ does, so 
the mutation sequence μ(W ′

n,R′
n) can be selected to obey the symmetry restriction. �

Using Corollary 6.2.15 and Lemma 6.2.5, we could also prove a similar result for 
the LP algebra LMn. However, we will wait to do so until Lemma 6.3.6 where we will 
describe it more elegantly using the notion of weak separation.

We have now have the required machinery to prove our main theorem of this section.

Theorem 6.2.16. Fix a symmetric n × n matrix M of distinct indeterminates. Then, the 
C-Laurent phenomenon algebra LMn is isomorphic to the polynomial ring (over C) on 
the 

(
n
2
)

non-diagonal entries of M .

Proof. We may directly apply the use of [7, Proposition 3.6] for LP algebras (for which 
the proof is identical) to LMn as defined in Definition 6.2.2. It is well-known that minors 
of a matrix of indeterminates are irreducible, so we immediately have that all of our seed 
variables are pairwise coprime. We also need to check that each initial seed variable is
coprime to the variable obtained by mutating its associated vertex in Qn, and that this 
new variable is in the polynomial ring generated by the non-diagonal entries of M . For 
non-limiting (and non-frozen) minors, this is clear, because each such mutation replaces 
a minor with another minor via (5.1.1). For limiting minors, it is not difficult to check 
that this is not the case.

It remains to check, then that each of the n(n − 1) non-diagonal entries of M ′ appear 
as cluster variables in some cluster of CMn. However, because 1 × 1 minors are solid, 
the result is immediate from Lemma 6.2.15 and Lemma 6.2.5. �

Because all 1 × 1 minors are solid, mutations of the form (5.1.1) were sufficient to 
establish Theorem 6.2.16. Once we allow mutations of the form (5.1.2), the clusters 
become more difficult to describe. However, let us propose the following conjecture, 
which has been established computationally for n ≤ 6.

Conjecture 6.2.17. Every cluster of LMn consisting entirely of circular pairs can be 
reached from the initial cluster using only mutations of the form (5.1.1) or (5.1.2).
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6.3. Weak separation

We next introduce an analogue of weakly separated sets from [13] for circular pairs. 
We recall the definition used in [19,15], which is more natural in this case2:

Definition 6.3.1. Two sets A, B ⊂ [n] are weakly separated if there are no a, a′ ∈ A \ B
and b, b′ ∈ B \A such that a < b < a′ < b′ or b < a < b′ < a′.

Our analogue is as follows:

Definition 6.3.2. Two circular pairs (P ; Q) and (R; S) are weakly separated if P ∪ R is 
weakly separated from Q ∪ S, and P ∪ S is weakly separated from Q ∪R.

Remark 6.3.3. Note that (P ; Q) is weakly separated from itself and from (Q̃; P̃ ). Fur-
thermore, (P ; Q) is weakly separated from (R; S) if and only if (Q̃; P̃ ) is, so under the 
convention (P ; Q) = (Q̃; P̃ ), weak separation is well-defined.

Conjecture 6.3.4. Let C be a set of circular minors, for an n ×n generic response matrix. 
Then the following are equivalent.

P: C is a minimal positivity test.
S: C is a maximal set of pairwise weakly separated circular pairs.
C: C is a cluster of LMn.

Conjecture 6.3.4 has been computationally verified for n ≤ 6. It is not immediately 
clear to the authors what the correct analogues of this statement are in other total 
positivity settings.

We now prove various weak forms of this conjecture. First, for all clusters C of LMn

that are reachable from the initial seed via Grassmann–Plücker relations (cf. Conjec-
ture 6.2.17), the elements of C are pairwise weakly separated:

Proposition 6.3.5. If C is a set of pairwise weakly separated circular pairs such that, for 
some substitution of values into (5.1.1) or (5.1.2), all the terms on the right hand side, 
and one term (P ; Q) on the left hand side, are in C, then the remaining term (R; S) on 
the left hand side is weakly separated from all of C − (P ; Q).

Proof. Let a, b, c, d be as in (5.1.1) or (5.1.2). It is clear that (R; S) can only be non-
weakly separated from an element of C− (P ; Q), if a, b, c, d are boundary vertices forcing 
the non-weak separation.. However, this is easily seen to be impossible. �
2 Our definition varies slightly from that in the literature in the case where the two sets do not have the 

same size.
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When restricting ourselves to clusters of solid minors, the analogue of Corollary 6.2.15
for LMn matches exactly with a weak form of the equivalence S ⇔ C in Conjecture 6.3.4.

Proposition 6.3.6. A set C of solid circular pairs can be reached (as a cluster) from the 
initial cluster Sn in LMn using only mutations of the form (5.1.1) if and only if C is a 
set of 

(
n
2
)

pairwise weakly separated solid circular pairs.

Proof. The elements of the initial cluster Sn in LMn, which consists of the diametric 
pairs Dn, are easily seen to be pairwise weakly separated. Then, by Proposition 6.3.5, 
any cluster we can reach from Sn using only mutations of the form (5.1.1) must also be 
pairwise weakly separated.

Conversely, consider any set C of 
(
n
2
)

pairwise weakly separated solid circular pairs. 
Let C ′ = {(P ; Q)′ | (P ; Q) ∈ C}, and notice that |C ′| = 2

(
n
2
)
. By Corollary 6.2.15

and Lemma 6.2.5, it is enough to prove that C ′ ∪ {(∅; ∅)} is a solid cluster (see Def-
inition 6.2.10) in CMn. From here it will follow by definition that C ′ is a symmetric 
solid seed, meaning C can be reached from Sn in LMn using only mutations of the form 
(5.1.1), as desired.

Before proceeding, it is straightforward to check that circular pairs (P ; Q) =
(p1, . . . , pa; q1, . . . , qa) and (R; S) = (r1, . . . , rb; s1, . . . , sb) are weakly separated if and 
only if the following four intersections are non-empty:

[p1, q1] ∩ (R ∪ S), [pa, qa] ∩ (R ∪ S), [r1, s1] ∩ (P ∪Q), [rb, sb] ∩ (P ∪Q),

where the interval [a, b] denotes the vertices on the arc clockwise from a to b, inclusive. 
We now prove that C ′ ∪ {(∅; ∅)} is a solid cluster. First, notice that if non-symmetric 
circular pairs (P ; Q)′ = (p1, . . . , pa; q1, . . . , qa)′ and (R; S)′ = (r1, . . . , rb; s1, . . . , sb)′ are 
such that k(P ; Q)′ = k(R; S)′ and T (P ; Q)′ = T (R; S)′, but D(P ; Q)′ �= D(R; S)′, then 
(P ; Q) and (R; Q) are not weakly separated. Hence, at most one of (P ; Q)′ and (R; S)′ is 
in C ′. As there are exactly 2

(
n
2
)

choices of T and k that give valid non-symmetric solid 
circular pairs, there must be one element of C ′ corresponding to each choice of (T, k).

Second, consider any adjacent (P ; Q)′ and (R; S)′ in C ′. Without loss of generality, 
one of

• k(P ; Q)′ = k(R; S)′ and T (P ; Q)′ = T (R; S)′ + 1
2 ,

• T (P ; Q)′ = T (R; S)′ and k(P ; Q)′ = k(R; S)′ + 1.

holds. In either case, because (P ; Q)′ and (R; S)′ are weakly separated, we can see that 
|D(P ; Q)′ − D(R; S)′| = 2. It follows that C ′ ∪ {(∅; ∅)} is a solid cluster, so we are 
done. �

We now relate C and P. Recall that, by Lemma 6.2.6, if C satisfies C, then C is a 
positivity test. Furthermore, |C| =

(
n
2
)
. We can prove, similarly to [13, Theorem 1.2], 

that:
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Proposition 6.3.7. If C satisfies S, then |C| ≤
(
n
2
)
.

In fact, we can prove a slightly stronger result by interpreting a circular pair as a set 
of edges.

Definition 6.3.8. For a circular pair (P ; Q) = (p1, . . . , pk; q1, . . . , qk), define E(P ; Q) =
{{pi, qi} | i ∈ {1, . . . , k}}. Similarly, for a set D ⊂ {{i, j} | 1 ≤ i < j ≤ n} of edges such 
that no two edges in D cross, let V (E) be the circular pair for which E(V (D)) = D.

Proposition 6.3.9. If C is a set of pairwise weakly separated circular pairs with

E =
⋃

(P ;Q)∈C

E(P ;Q),

then |C| ≤ |E|.

Proof. Proceed by induction on |E|. The case |E| = 0 is trivial, so assume the result 
is true for |E| < m. Suppose that we have C, E with |E| = m, and assume for sake of 
contradiction that |C| > m. Choose some {a, b} ∈ E such that, for any other {c, d} ∈ E, 
c and d do not both lie on the arc drawn from a to b in the clockwise direction (this arc 
is taken to include both a and b). Now, letting E′ = E \ {{a, b}}, define the projection 
map J : 2E → 2E′ by:

J(D) =
{
D \ {{a, b}} if {a, b} ∈ D,

D otherwise.

We may define J for circular pairs analogously: J(P ; Q) = V (J(E(P ; Q))), and let C ′ =
{J(P ; Q) | (P ; Q) ∈ C}. Then, the following two lemmas follow from straightforward 
casework:

Lemma 6.3.10. The elements of C ′ are pairwise weakly separated.

Lemma 6.3.11. There is at most one (P ; Q) ∈ C with {a, b} ∈ E(P ; Q) and J(P ; Q) ∈ C.

Using these lemmas, we can finish our proof. By Lemma 6.3.10, the elements of C ′

are pairwise weakly separated, and we also have E′ =
⋃

(P ;Q)∈C′ E(P ; Q). Thus, by the 
inductive hypothesis, |C ′| ≤ |E′| = |E| − 1. However, we see from Lemma 6.3.11 that 
|C ′| ≥ |C| − 1, so the induction is complete. �

Now, Proposition 6.3.7 follows easily by taking E = {{i, j} | 1 ≤ i < j ≤ n} in 
Proposition 6.3.9. Proposition 6.3.9 also has another natural corollary:

Corollary 6.3.12. For any set S of pairwise weakly separated circular pairs, there is an 
injective map e : S → {{i, j} | 1 ≤ i < j ≤ n} such that e(P ; Q) ∈ E(P ; Q) for each 
(P ; Q) ∈ S.
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Proof. Proposition 6.3.9 gives exactly the condition required to apply Hall’s marriage 
theorem. �
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Appendix A. Proofs of Lemmas 4.2.2–4.2.4

Proof of Lemma 4.2.2. We proceed by strong induction on n: the inequality is easily 
verified for n = 6, 7, 8 using Theorem 4.1.6. Furthermore, note that Xn < 2nXn−1 for 
n = 2, 3, 4, 5 as well. Now, assume n ≥ 9.

By Theorem 4.1.6, it is enough to show

Xn−1 <

n−2∑
j=2

(j − 1)XjXn−j < 2Xn−1. (A.1)

We first show the left hand side of (A.1). Now, we have

n−2∑
j=2

(j − 1)XjXn−j > X2Xn−2 + (n− 4)Xn−3X3 + (n− 3)Xn−2X2

= 2(n− 2)Xn−2 + 8(n− 4)Xn−3

>

(
n− 2
n− 1 + 2(n− 4)

(n− 2)(n− 1)

)
Xn−1

> Xn−1,

where we have applied the inductive hypothesis.
It remains to prove the right hand side of (A.1). First, suppose that n is odd, with 

n = 2k − 1, k ≥ 4. Let Qi = Xi/Xi−1 for each i; we know that Qi > 2i − 1 for all i ≥ 5. 
Then, we have

n−2∑
j=2

(j − 1)XjXn−j = (2k − 3)
k−1∑
j=2

XjX2k−1−j

= (2k − 3)Xn−1

k−1∑ Xj

Q2k−2Q2k−3 · · ·Q2k−j
j=2
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< (2k − 3)Xn−1

k−1∑
j=2

Xj

(4k − 5)(4k − 7) · · · (4k − 2j − 1) .

However, we claim that the terms in the sum are strictly decreasing. This amounts to 
the inequality (4k− 2j − 1)Xj−1 > Xj for 3 ≤ j ≤ k− 1, which follows by the inductive 
hypothesis as 4k − 2j − 1 > 2j. Thus,

(2k − 3)Xn−1

k−1∑
j=2

Xj

(4k − 5)(4k − 7) · · · (4k − 2j − 1)

< (2k − 3)Xn−1

(
X2

4k − 5 + (k − 3)X3

(4k − 5)(4k − 7)

)

= Xn−1

(
4k − 6
4k − 5 + (4k − 12)(4k − 6)

(4k − 5)(4k − 7)

)
< 2Xn−1,

where we substitute X2 = 2, X3 = 8. The case in which n is even may be handled 
similarly, and the induction is complete. �

Recall the definitions of Dn, En from Section 4.2. We now prove Lemmas 4.2.3 and 
4.2.4, that Dn/Xn → √

e− 1 and En/Xn → 0, respectively.

Proof of Lemma 4.2.3. We may as well consider Dn − 1 =
∑n−2

j=1
(
n
j

)
Xn−j . Using the 

notation Qi = Xi/Xi−1, as in the proof of Lemma 4.2.2, we have

∑n−2
j=1

(
n
j

)
Xn−j

Xn
=

n−2∑
j=1

1
j! ·

n(n− 1) · · · (n− j + 1)
QnQn−1 · · ·Qn−j+1

=
n−2∑
j=1

1
2jj! ·

2n(2n− 2) · · · (2n− 2j + 2)
QnQn−1 · · ·Qn−j+1

=
n−2∑
j=1

1
2jj! +

n−2∑
j−1

1
2jj!

(
2n(2n− 2) · · · (2n− 2j + 2)

QnQn−1 · · ·Qn−j+1
− 1

)
.

As n → ∞, first summand above converges to 
√
e − 1, so it is left to check that the 

second summand converges to zero.
Note that, by Lemma 4.2.2,

2n(2n− 2) · · · (2n− 2j + 1)
> 1.
QnQn−1 · · ·Qn−j+2
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Now,

0 <
n−2∑
j=1

1
2jj!

(
2n(2n− 2) · · · (2n− 2j + 2)

QnQn−1 · · ·Qn−j+1
− 1

)

<

n−5∑
j=1

1
2jj!

(
2n(2n− 2) · · · (2n− 2j + 2)

QnQn−1 · · ·Qn−j+1
− 1

)

+Kn

[
1

2n−4(n− 4)! + 1
2n−3(n− 3)! + 1

2n−2(n− 2)!

]
,

for some positive constant K.
It is also easy to see that the second term above goes to zero as n → ∞. Now, applying 

Lemma 4.2.2 again (noting that the indices are all at least 6),

n−5∑
j=1

1
2jj!

(
2n(2n− 2) · · · (2n− 2j + 2)

QnQn−1 · · ·Qn−j+1
− 1

)

<

n−5∑
j=1

1
2jj! ·

(
2n

2n− 2j + 1 − 1
)

<
n−5∑
j=1

1
2j−1(j − 1)! ·

1
2n− 2j + 1 .

It is not difficult to show that the above sum goes to zero as n → ∞, so the proof is 
complete. �
Proof of Lemma 4.2.4. It is an immediate consequence (independently of the result of 
Theorem 4.2.1) of Lemma 4.2.2 that Xn = O((2n −1)!!). Thus, to prove that En/Xn → 0, 
we may as well prove that

n

n−2∑
j=2

(2j − 1)!!(2n− 2j − 1)!!
(2n− 1)!! → 0.

It is straightforward to check that the largest terms of the sum are when j = 2, n− 2, 
and these terms are of inverse quadratic order, from which the conclusion follows imme-
diately. �
Appendix B. Proofs of Lemmas 5.2.5 and 5.2.6

We will first prove Lemma 5.2.5:

Lemma 5.2.5. For any two incomplete circular pairs (P ; Q) and (P ′; Q′), any electrical 
positroid Z satisfying S0 ∪{(P +1; Q +n)} ⊂ Z ⊂ S1 must also contain (P ′ +1; Q′ +n).
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We start by presenting a series of technical lemmas.

Lemma B.1. Let (P ; Q) = (a1, . . . , ak; b1, . . . , bk) ∈ S0 be an incomplete circular pair, 
such that (P + 1; Q + n) is a circular pair (and is not in S0). Furthermore, assume that 
(P ; Q) is minimal, that is, (P − ak; Q − bk) is complete. Then, for all 0 ≤ i ≤ k − 1, 
(ai; bi+1), (ai+1; bi) ∈ S0.

Proof. Immediate from axiom 1a of Definition 5.1.3. �
Lemma B.2. Let (a, b, c; d, e, f) be a circular pair. Then, if (a; d), (a; f), (b; e), (c; d),
(c; f) ∈ S0, then (a; d), (b; e), (b; f), (c; e) ∈ S0.

Proof. Immediate from axiom 1b. �
Lemma B.3. If (a1, . . . , an; b1, . . . , bn) ∈ S0, (an+1; bn+1) ∈ S0, and an, an+1, bn+1, bn
appear in clockwise order, then (a1, . . . , an−1, an+1; b1, . . . , bn−1, bn+1) ∈ S0.

Proof. If (an; bn+1) ∈ S and (an+1; bn) ∈ S, the claim follows from axiom 2b, axiom 2c 
and induction on n. Otherwise, it follows from axiom 1a and induction on n. �
Lemma B.4. Let (P ; Q) = (a1, . . . , ak; b1, . . . , bk) ∈ S0 be a complete circular pair. Then, 
(P − ai; Q − bi) is complete for all i = 1, 2, . . . , k.

Proof. Applying axiom 2c with a1, ai, ak, b1 to (P ; Q − bk) gives (P − ai; Q − bk) ∈ S. 
Then another application of axiom 2c, to (Q; P − ai) with b1, bi, bk, ai gives the desired 
result. �
Lemma B.5. Let (P, a, b, c, Q; R, d, e, f, T ) be a circular pair, where P, Q, R, T are se-
quences of boundary vertices. Suppose that

(a; d), (a; e), (b; d), (b; e), (b; f), (c; e), (c; f) ∈ S,

(P, a, b;R, d, e) ∈ S, and

(P, a, c,Q;R, d, f, T ) ∈ S

Then, (P, a, b, Q; R, d, e, T ) ∈ S.

Proof. It is straightforward to check that this lemma follows from induction on the size 
of P and axioms 2b and 2c. �
Lemma B.6. Let P, Q, R, T be sequences of indices, and let (1, P, a, b, c, Q; n, R, d, e, f, T )
be a circular pair. Suppose
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(a; d), (a; e), (b; d), (b; e), (b; f), (c; e), (c; f) ∈ S,

(1, P, a, b,Q;n,R, d, e, T ) ∈ S, and

(P, a, c,Q;R, d, f, T ) ∈ S.

Then (1, P, a, c, Q; n, R, d, f, T ) ∈ S.

Proof. It is straightforward to check that this lemma follows from induction and ax-
iom 2c. �
Lemma B.7. Consider a circular pair (P ; Q) = (a1, . . . , ak; b1, . . . , bk), and let (P + a;
Q + b) be an incomplete circular pair with ak < a < b < bk in clockwise order. Then, 
any electrical positroid Z satisfying S0 ∪{(P + 1; Q +n)} ⊂ Z ⊂ S1 contains (P + a + 1;
Q + b + n).

Proof. It is easy to see that any element of Z \S0 must be of the form (P ′+1; Q′+n), for 
some P ′, Q′. By axiom 1a, (P +1; Q +n) ∈ Z and (P + a; Q + b) ∈ Z implies that either 
(P+a +1; Q +b +n) ∈ Z, or (P+a +1; Q +b +n) /∈ Z and (P+1; Q +b), (P+a, Q +2) ∈ Z. 
We are done in the former case, so assume for sake of contradiction that we have the 
latter. (P + 1; Q + b), (P + a, Q + 2) are not of the form (P ′ + 1; Q′ +n), so cannot lie in 
Z\S; thus, (P+1; Q +b), (P+a, Q +2) ∈ S. Finally, axiom 1b yields us (P+1; Q +n) ∈ S, 
a contradiction, so we are done. �
Definition B.8. Two pairs of indices (i, j) and (i′, j′) are said to cross if i < i′ < j′ < j

and (i; j′), (i′; j) ∈ S.

Definition B.9. For ease of notation, denote the sequence of indices ak, . . . , a� by Ak,�.

We now algorithmically construct a set P of circular pairs, which we will call primary
circular pairs. The construction is as follows: begin by placing (1; n) ∈ P. Then, for 
each (P ; Q) = (A1,i−1; B1,i−1) ∈ P, if we also have (P ; Q) ∈ S0, perform the following 
operation.

• Let a be the first index appearing clockwise from ai−1 such that there exists c with 
(a, c) crossing (ai−1, bi−1), and also (A2,i−1, a; B2,i−1, c) ∈ S. If a does not exist, 
stop. Otherwise, with a fixed, take c to be the first index appearing counterclockwise 
from bi−1 satisfying these properties.

• If a exists, add (A1,i−1, a; B1,i−1, c) to P, and remove (P ; Q) = (A1,i−1; B1,i−1).
• Similarly, let b to be the largest index counterclockwise from bi−1 such that there 

exists d with (d, b) crossing (ai−1, bi−1) and (a2, . . . , d; b2, . . . , bi) ∈ S. If b does not 
exist, stop. Otherwise, with b fixed, take d to be the first index clockwise from ai−1

with these properties.
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• If a �= d and b �= c (note that if a = d, then b = c), then add (A1,i−1, d; B1,i−1, b) to 
P. Note that c ≤ d or else, by 1a, c could originally have been set to d.

It is easily seen that at any time, the algorithm may be performed on the elements 
of P in any order, and that it will eventually terminate, when the operation described 
above results in no change in P for all (P ; Q) ∈ P.

Definition B.10. For a circular pair (P ; Q) = (p1, . . . , pk; q1, . . . , qk), define E(P ; Q) =
{{pi, qi} | i ∈ {1, . . . , k}}. We will take E(P ; Q) to be an ordered set and abusively refer 
to its elements as connections.

Lemma B.11. For any incomplete circular pair (P ; Q), there exists a circular pair 
(P ′; Q′) ∈ P such that any electrical positroid Z satisfying S0 ∪ {(P ′; Q′)} ⊂ Z ⊂ S1

contains (P + 1; Q + n).

Proof. By Lemma B.7, we may assume that (P ; Q) is a minimal incomplete circular 
pair. Consider the primary circular pairs whose first i connections are the same as those 
of (P ; Q). By the construction of P, there are at most two such primary circular pairs, 
and we can choose either.

Then, we can prove the lemma by retrograde induction on i, where i is such that the 
first i connections of (P ; Q) are shared with some primary circular pair. As this induction 
is straightforward from the previous lemmas, we omit the details. �
Lemma B.12. There is exactly one circular pair in P that does not lie in S0, which we 
call the S0-primary circular pair.

Proof. By Lemma B.11, P \ S0 has at least one element, because S0 does not have the 
(n, 1)-BEP. It is then straightforward to check that the axioms do not allow us to have 
more than one element, so we are done. �
Lemma B.13. For any incomplete circular pair (P ; Q), any electrical positroid Z satisfy-
ing S0 ∪ {(P + 1; Q + n)} ⊂ Z ⊂ S1 contains the S0-primary circular pair.

Proof. The argument is a retrograde induction on i, where i is such that the first i
connections of (P ; Q) are the same as those of some primary circular pair. The base case 
is immediate from the subset axiom, and the induction follows from applications of the 
axioms and Lemma B.5. �

We then have our desired lemma as an immediate corollary of Lemmas B.13 and B.11. 
Next, we prove Lemma 5.2.6:

Lemma 5.2.6. There exists an electrical positroid T with T0 ⊂ T ⊂ S0 ∩ S′
0.
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Proof. We give an algorithm to construct such an electrical positroid T . We begin by 
setting T = T0; note that T satisfies the last two electrical positroid axioms, but may not 
satisfy the first six. Each of the first six axioms are of the form A, B ∈ T ⇒ C, D ∈ T , 
or otherwise A, B ∈ T ⇒ C, D ∈ T or E , F ∈ T . At each step of the algorithm, if T is an 
electrical positroid, we stop, and if not, we pick an electrical positroid axiom α (among 
the first six) not satisfied by A, B ∈ T . We then show that we can add elements of S0∩S′

0
to T so that α is satisfied by A, B, and so that T also still satisfies the subset axiom.

It is clear what to do when α is one of axioms 1b, 1c, 2b, and 2c: we simply add the 
circular pairs C, D, and their subsets. Thus, we need to check what to do when α is one 
of axioms 1a and 2a. Then, it will be clear that the algorithm must terminate, because 
we can only add finitely many elements, with T having the desired properties.

We first consider axiom 1a, which we assume to fail in T when applied to (P − a;
Q − c), (P − b; Q − d) ∈ T . If (P − a; Q − c), (P − b; Q − d) ∈ S0, either (P − a;
Q− d), (P − b; Q − c) ∈ S0 or (P − a − b; Q − c − d), (P ; Q) ∈ S0. It is easy to see that 
1 ∈ P and n ∈ Q (or vice versa, but we can swap P and Q and reverse their orders), or 
else axiom 1a already would have been satisfied by (P − a; Q − c), (P − b; Q − d) ∈ T . 
Then, we just need to perform a straightforward casework check based on whether a and 
c are equal to 1 or n.

Axiom 2a can be handled in a similar manner, by casework on whether a and d are 1
or n, and so our algorithm is well-defined. �
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